Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

A Method to Combine a Tire Model with a Flexible Rim Model in a Hybrid MBS/FEM Simulation Setup

2011-04-12
2011-01-0186
During the last ten years, there is a significant tendency in automotive design to use lower aspect ratio tires and meanwhile also more and more run-flat tires. In appropriate publications, the influences of these tire types on the dynamic loads - transferred from the road passing wheel center into the car - have been investigated pretty well, including comparative wheel force transducer measurements as well as simulation results. It could be shown that the fatigue input into the vehicle tends to increase when using low aspect ratio tires and particularly when using run-flat tires. But which influences do we get for the loading and fatigue behavior of the respective rims? While the influences on the vehicle are relatively easy to detect by using wheel force transducers, the local forces acting on the rim flange (when for example passing a high obstacle) are much more difficult to detect (in measurement as well as in simulation).
Technical Paper

Investigation of Gravel Noise Mechanisms and Impact Noise Transfer

2007-05-15
2007-01-2274
Impact noise, inside a car, due to tire-launched gravel on the road can lead to loss of quality perception. Gravel noise is mainly caused by small-sized particles which are too small to be seen on the road by the driver. The investigation focuses on the identification of the mechanisms of excitation and transfer. The spatial distribution of the particles flying from a tire is determined, as well as the probable impact locations on the vehicle body-panels. Finally the relative noise contributions of the body-panels are estimated by adding the panel-to-ear transfer functions. This form of Transfer-Path-Analysis allows vehicle optimization and target setting on the level of the tires, exterior panel treatment and isolation.
Technical Paper

Experimental Transfer Path Analysis of a Hybrid Bus

2005-05-16
2005-01-2335
This paper presents the results of an experimental test campaign carried out on a city bus powered by serial hybrid power train. The driveline system combines an Internal Combustion Engine with a battery pack and two electric motors. Tests were aimed at identifying the salient signal characteristics of the noise spectra recorded during operating conditions and to assess the acoustic comfort in the passenger compartment. Transfer Path Analysis technique was applied to identify airborne and structure borne vibro-acoustic loads, to measure transfer functions linking source locations to target locations and to estimate the internal vibro-acoustic comfort in operating conditions.
Technical Paper

Industrial Applicability of Modal Analysis on Operating Data, 2001

2001-03-05
2001-01-3833
Traditionally, vibration analysis in operating conditions (on the road or on a bench) had to be combined with experimental modal analysis in controlled laboratory conditions in order to understand the modal behaviour of the structure. This requires additional measurements, costs and time. However, in many applications, the real operating conditions may differ significantly from those applied during the modal test and hence the vibration modes from the modal test might not be representative for the active modes in operation conditions. The need for a capability of doing a modal analysis on data from operating conditions is obvious. Over the last years, several modal parameter estimation techniques have been proposed and studied for modal parameter extraction from output-only data. Each method needs to make a number of assumptions and has some limitations.
Technical Paper

Industrial Applicability of Modal Analysis on Operating Data, 1999

1999-05-17
1999-01-1783
Traditionally, vibration analysis in operating conditions (on the road or on a bench) had to be combined with experimental modal analysis in controlled laboratory conditions in order to understand the modal behaviour of the structure. This requires additional measurements, costs and time. However, in many applications, the real operating conditions may differ significantly from those applied during the modal test and hence the vibration modes from the modal test might not be representative for the active modes in operation conditions. The need for a capability of doing a modal analysis on data from operating conditions is obvious. Over the last years, several modal parameter estimation techniques have been proposed and studied for modal parameter extraction from output-only data. Each method needs to make a number of assumptions and has some limitations.
Technical Paper

Identification, Quantification and Reduction of Structural- Borne Road Noise in a Mid-Size Passenger Car

1996-02-01
960195
This paper presents the measurement & analysis procedures and the results of a complete road noise identification and reduction project on a midsize passenger car. Operational interior noise signals and structural accelerations are measured for several test conditions. The operating data are decomposed into sets of mathematically independent phenomena by Principal Component Analysis. Operating Deflection Shape Analysis and Transfer Path Analysis are applied to each of these independent phenomena. Critical transfer paths are thus identified and quantified. The interior sound level is amplified when the frequency content of the transmitted energy coincides with structural resonances or standing waves of the interior car cavity. The vehicle is dynamically characterized by Experimental Structural Modal Analysis and by Acoustic Modal Analysis.
X