Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Simulating Traffic-wake Effects in a Wind Tunnel

2023-04-11
2023-01-0950
Road-vehicle platooning is known to reduced aerodynamic drag. Recent aerodynamic-platooning investigations have suggested that follower-vehicle drag-reduction benefits persist to large, safe inter-vehicle driving distances experienced in everyday traffic. To investigate these traffic-wake effects, a wind-tunnel wake-generator system was designed and used for aerodynamic-performance testing with light-duty-vehicle (LDV) and heavy-duty-vehicle (HDV) models. This paper summarizes the development of this Road Traffic and Turbulence System (RT2S), including the identification of typical traffic-spacing conditions, and documents initial results from its use with road-vehicle models. Analysis of highway-traffic-volume data revealed that, in an uncongested urban-highway environment, the most-likely condition is a speed of 105 km/h with an inter-vehicle spacing of about 50 m.
Technical Paper

A Study on the Use of Intake Flow Path Modification to Reduce Methane Slip of a Natural Gas-Diesel Dual-Fuel Engine

2022-03-29
2022-01-0467
Use of natural gas-diesel dual-fuel (NDDF) combustion in compression ignition engines is a method of reducing the net greenhouse gas (GHG) and particulate matter (PM) emissions of these engines. Compressed natural gas (NG) is injected into the intake manifold of the engine and the air-NG mixture is ignited by a direct injection of diesel in the cylinder. One of the main challenges with NDDF combustion is the methane (primary component of NG) slip at low and medium loads, which reduces the engine efficiency and offsets the advantage of lower carbon dioxide emissions of the NG combustion. In order to address this issue, an intake manifold insert is devised with the objective to alter the intake flow profile into the engine and ultimately reduce the methane slip. This is a novel strategy for an NDDF engine since modifying the in-cylinder flow profile can intensify the mixing between diesel and air-NG mixture in order to improve the NG utilization in the cylinder.
Technical Paper

Large-Scale Vehicle-Wake Characterization Using a Novel, Single-Camera Particle Tracking Technique

2021-04-06
2021-01-0940
The aerodynamic forces experienced by vehicles depend on a variety of factors including wind direction, traffic, and roadside vegetation. Such complex boundary conditions often result in unsteady flow separation and the formation of large-scale coherent structures, which, in turn, significantly influence the aerodynamics of following vehicles. To gain a deeper understanding of the unsteady behaviour of such vehicle wakes under large-scale conditions, a time-resolved field measurement technique is required. Existing methods, such as tomographic particle image velocimetry and three-dimensional particle tracking velocimetry are unfortunately quite limited at these scales. Furthermore, such techniques require complex multi-camera calibrations, hazardous lasers, and optical access from many vantage points.
Technical Paper

Characterization of Methane Emissions from a Natural Gas-Fuelled Marine Vessel under Transient Operation

2021-04-06
2021-01-0631
Natural gas is an increasingly attractive fuel for marine applications due to its abundance, lower cost, and reduced CO2, NOx, SOx, and particulate matter (PM) emissions relative to conventional fuels such as diesel. Methane in natural gas is a potent greenhouse gas (GHG) and must be monitored and controlled to minimize GHG emissions. In-use GHG emissions are commonly estimated from emission factors based on steady state engine operation, but these do not consider transient operation which has been noted to affect other pollutants including PM and NOx. This study compares methane emissions from a coastal marine vessel during transient operation to those expected based on steady state emission factors. The exhaust methane concentration from a diesel pilot-ignited, low pressure natural gas-fuelled engine was measured with a wavelength modulation spectroscopy system, during periods of increasing and decreasing engine load (between 3 and 90%).
Journal Article

Near-to-Far Wake Characteristics of Road Vehicles Part 2: Influence of Cross Winds and Free-Stream Turbulence

2021-04-06
2021-01-0949
Conventional assessments of the aerodynamic performance of ground vehicles have, to date, been considered in the context of a vehicle that encounters a uniform wind field in the absence of surrounding traffic. Recent vehicle-platooning studies have revealed measurable fuel savings when following other vehicles at inter-vehicle distances experienced in every-day traffic. These energy savings have been attributed in large part to the air-wakes of the leading vehicles. This set of three papers documents a study to examine the near-to-far regions of ground-vehicle wakes (one to ten vehicle lengths), in the context of their potential influence on other vehicles. Part two of this three-part paper documents the influence of the ambient winds on the development of the wake behind a vehicle.
Journal Article

Near-to-Far Wake Characteristics of Road Vehicles Part 1: Influence of Ground Motion and Vehicle Shape

2021-04-06
2021-01-0957
Conventional assessments of the aerodynamic performance of ground vehicles have, to date, been considered in the context of a vehicle that encounters a uniform wind field in the absence of surrounding traffic. Recent vehicle-platooning studies have revealed measurable fuel savings when following other vehicles at inter-vehicle distances experienced in every-day traffic. These energy savings have been attributed in large part to the air-wakes of the leading vehicles. This set of three papers documents a study to examine the near-to-far regions of ground-vehicle wakes (one to ten vehicle lengths), in the context of their potential influence on other vehicles. Part one of this three-part paper documents principally the influence of vehicle shape on the development of its wake.
Technical Paper

An Experimental Study on the Effect of Exhaust Gas Recirculation on a Natural Gas-Diesel Dual-Fuel Engine

2020-04-14
2020-01-0310
Natural gas (NG)-diesel dual-fuel combustion can be a suitable solution to reduce the overall CO2 emissions of heavy-duty vehicles using diesel engines. One configuration of such a dual-fuel engine can be port injection of NG to form a combustible air-NG mixture in the cylinder. This mixture is then ignited by a direct injection of diesel. Other potential advantages of such an engine include the flexibility of switching back to diesel-only mode, reduced hardware development costs and lower soot emissions. However, the trade-off is lower brake thermal efficiency (BTE) and higher hydrocarbon emissions, especially methane, at low load and/or high engine speed conditions. Advancing the diesel injection timing tends to improve the BTE but may cause the NOx emissions to increase.
Technical Paper

LiDAR Based Classification Optimization of Localization Policies of Autonomous Vehicles

2020-04-14
2020-01-1028
People through many years of experience, have developed a great intuitive sense for navigation and spatial awareness. With this intuition people are able to apply a near rules based approach to their driving. With a transition to autonomous driving, these intuitive skills need to be taught to the system which makes perception is the most fundamental and critical task. One of the major challenges for autonomous vehicles is accurately knowing the position of the vehicle relative to the world frame. Currently, this is achieved by utilizing expensive sensors such as a differential GPS which provides centimeter accuracy, or by using computationally taxing algorithms to attempt to match live input data from LiDARs or cameras to previously recorded data or maps. Within this paper an algorithm and accompanying hardware stack is proposed to reduce the computational load on the localization of the robot relative to a prior map.
Technical Paper

Influences on Energy Savings of Heavy Trucks Using Cooperative Adaptive Cruise Control

2018-04-03
2018-01-1181
An integrated adaptive cruise control (ACC) and cooperative ACC (CACC) was implemented and tested on three heavy-duty tractor-trailer trucks on a closed test track. The first truck was always in ACC mode, and the followers were in CACC mode using wireless vehicle-vehicle communication to augment their radar sensor data to enable safe and accurate vehicle following at short gaps. The fuel consumption for each truck in the CACC string was measured using the SAE J1321 procedure while travelling at 65 mph and loaded to a gross weight of 65,000 lb, demonstrating the effects of: inter-vehicle gaps (ranging from 3.0 s or 87 m to 0.14 s or 4 m, covering a much wider range than previously reported tests), cut-in and cut-out maneuvers by other vehicles, speed variations, the use of mismatched vehicles (standard trailers mixed with aerodynamic trailers with boat tails and side skirts), and the presence of a passenger vehicle ahead of the platoon.
Technical Paper

Evaluation of Kinetics Process in CFD Model and Its Application in Ignition Process Analysis of a Natural Gas-Diesel Dual Fuel Engine

2017-03-28
2017-01-0554
Computational fluid dynamics (CFD) model has been widely applied in internal combustion (IC) engine research. The integration of chemical kinetic model with CFD provides an opportunity for researchers to investigate the detailed chemical reactions for better understanding the combustion process of IC engines. However, the simulation using CFD has generally focused on the examination of primary parameters, such as temperature and species distributions. The detailed investigation on chemical reactions is limited. This paper presents the development of a post-processing tool capable of calculating the rate of production (ROP) of interested species with the known temperature, pressure, and concentration of each species in each cell simulated using CONVERGE-SAGE CFD model.
Journal Article

Evaluation of the Aerodynamics of Drag Reduction Technologies for Light-duty Vehicles: a Comprehensive Wind Tunnel Study

2016-04-05
2016-01-1613
In a campaign to quantify the aerodynamic drag changes associated with drag reduction technologies recently introduced for light-duty vehicles, a 3-year, 24-vehicle study was commissioned by Transport Canada. The intent was to evaluate the level of drag reduction associated with each technology as a function of vehicle size class. Drag reduction technologies were evaluated through direct measurements of their aerodynamic performance on full-scale vehicles in the National Research Council Canada (NRC) 9 m Wind Tunnel, which is equipped with a the Ground Effect Simulation System (GESS) composed of a moving belt, wheel rollers and a boundary layer suction system. A total of 24 vehicles equipped with drag reduction technologies were evaluated over three wind tunnel entries, beginning in early 2014 to summer 2015. Testing included 12 sedans, 8 sport utility vehicles, 2 minivans and 2 pick-up trucks.
Journal Article

Residual Stress Mapping along the Cylinder Bores of Al Alloy Engine Blocks Subjected to Production Solution Heat Treatment Schedule

2014-04-01
2014-01-0837
The development of an optimized heat treatment schedule, with the aim of maximizing strength and relieving tensile residual stress, is important to prevent in-service cylinder distortion in Al alloy engine blocks containing cast-in gray iron liners. However, to effectively optimize the engine block heat treatment schedule, the current solutionizing parameters must be analyzed and compared to the as-cast condition to establish a baseline for residual stress relief. In this study, neutron diffraction was carried out to measure the residual stress along the aluminum cylinder bridge following solution heat treatment. The stresses were measured in the hoop, radial and axial orientations and compared to a previous measured as-cast (TSR) engine block. The results suggest that solution heat treatment using the current production parameters partially relieved tensile residual stress in the Al cylinder bridge, with stress relief being more effective near the bottom of the cylinder.
Technical Paper

Styrofoam Precursors as Drop-in Diesel Fuel

2013-09-08
2013-24-0108
Styrene, or ethylbenzene, is mainly used as a monomer for the production of polymers, most notably Styrofoam. In the synthetis of styrene, the feedstock of benzene and ethylene is converted into aromatic oxygenates such as benzaldehyde, 2-phenyl ethanol and acetophenone. Benzaldehyde and phenyl ethanol are low value side streams, while acetophenone is a high value intermediate product. The side streams are now principally rejected from the process and burnt for process heat. Previous in-house research has shown that such aromatic oxygenates are suitable as diesel fuel additives and can in some cases improve the soot-NOx trade-off. In this study acetophenone, benzaldehyde and 2-phenyl ethanol are each added to commercial EN590 diesel at a ratio of 1:9, with the goal to ascertain whether or not the lower value benzaldehyde and 2-phenyl ethanol can perform on par with the higher value acetophenone. These compounds are now used in pure form.
Journal Article

Analysis of Residual Strain Profiles in Distorted Aluminum Engine Blocks by Neutron Diffraction

2013-04-08
2013-01-0171
In recent years, light weight components have been an area of significant importance in automotive design. This has led to the replacement of steel and cast iron with aluminum alloys for many automotive components. For instance, Al-Si alloys have successfully replaced nodular and gray cast iron in the production of large automotive components such as engine blocks. However, excessive residual strain along the cylinder bores of these engine blocks may result in cylinder distortion during engine operation. Therefore, in this study, neutron diffraction was used to evaluate residual strain along the aluminum cylinder bridge and the gray cast iron liners of distorted and undistorted engine blocks. The strains were measured in the hoop, radial, and axial orientations. The results suggest that the residual strain along the aluminum cylinder bridge of the distorted engine block was tensile for all three measured components.
Technical Paper

Controlling the Forming of Thermoplastics through Forming Power

2013-04-08
2013-01-0602
Controlling the forming of large thermoplastic parts from a simulation requires very precise predictions of the pressure and volume profile evolution. Present pressure profile based simulations adequately predict the thickness distribution of a part, but the forming pressure and volume profile development lack the precision required for process control. However new simulations based on the amount of power required to form the material can accurately predict these pressure and volume profiles. In addition online monitoring of the forming power on existing machines can be easily implemented by installing a flow rate and pressure meter at the gas entrance, and if necessary, exits of the part. An important additional benefit is that a machine thus equipped can function as an online rheometer that can characterize the viscosity of the material at the operating point by tuning the simulation to the online measurements.
Journal Article

Neutron Diffraction Study on Residual Stress in Aluminum Engine Blocks Following Machining and Service Testing

2012-04-16
2012-01-0188
Development of lightweight alloys suitable for automobile applications has been of great importance to the automotive industry in recent years. The use of 319 type aluminum alloy in the production of gasoline engine blocks is an example of this shift towards light alloys for large automobile components. However, excessive residual stress along the cylinder bores of these engine blocks may cause problems during engine operation. Therefore, in this study, neutron diffraction was used to evaluate residual stresses along the aluminum cylinder bridge and the gray cast iron liners. The strains were measured in the hoop, radial, and axial orientations, while stresses were subsequently calculated using generalized Hooke's law. The results suggest that the residual stress magnitude for the aluminum cylinder bridge was tensile for all three measured components and gradually increased with cylinder depth towards the bottom of the cylinder.
Technical Paper

Injection of Fuel at High Pressure Conditions: LES Study

2011-09-11
2011-24-0041
This paper presents a large eddy simulation study of the liquid spray mixing with hot ambient gas in a constant volume vessel under engine-like conditions with the injection pressure of 1500 bar, ambient density 22.8 kg/m₃, ambient temperature of 900 K and an injector nozzle of 0.09 mm. The simulation results are compared with the experiments carried out by Pickett et al., under similar conditions. Under modern direct injection diesel engine conditions, it has been argued that the liquid core region is small and the droplets after atomization are fine so that the process of spray evaporation and mixing with the air is controlled by the heat and mass transfer between the ambient hot gas and central fuel flow. To examine this hypothesis a simple spray breakup model is tested in the present LES simulation. The simulations are performed using an open source compressible flow solver, in OpenFOAM.
Journal Article

Analysis of Residual Stress Profiles in the Cylinder Web Region of an As-Cast V6 Al Engine Block with Cast-In Fe Liners Using Neutron Diffraction

2011-04-12
2011-01-0036
Continuous efforts to develop a lightweight alloy suitable for the most demanding applications in automotive industry resulted in a number of advanced aluminum (Al) and magnesium alloys and manufacturing routes. One example of this is the application of 319 Al alloy for production of 3.6L V6 gasoline engine blocks. Aluminum is sand cast around Fe-liner cylinder inserts, prior to undergoing the T7 heat treatment process. One of the critical factors determining the quality of the final product is the type, level, and profile of residual stresses along the Fe liners (or extent of liner distortion) that are always present in a cast component. In this study, neutron diffraction was used to characterize residual stresses along the Al and the Fe liners in the web region of the cast engine block. The strains were measured both in Al and Fe in hoop, radial, and axial orientations. The stresses were subsequently determined using generalized Hooke's law.
Technical Paper

Effects of Cetane Number, Aromatic Content and 90% Distillation Temperature on HCCI Combustion of Diesel Fuels

2010-10-25
2010-01-2168
The effects of cetane number, aromatics content and 90% distillation temperature (T90) on HCCI combustion were investigated using a fuel matrix designed by the Fuels for Advanced Combustion Engines (FACE) Working Group of the Coordinating Research Council (CRC). The experiments were conducted in a single-cylinder, variable compression ratio, Cooperative Fuel Research (CFR) engine. The fuels were atomized and partially vaporized in the intake manifold. The engine was operated at a relative air/fuel ratio of 1.2, 60% exhaust gas recirculation (EGR) and 900 rpm. The compression ratio was varied over the range of 9:1 to 15:1 to optimize the combustion phasing for each fuel, keeping other operating parameters constant. The results show that cetane number and T90 distillation temperature significantly affected the combustion phasing. Cetane number was clearly found to have the strongest effect.
Journal Article

UHC and CO Emissions Sources from a Light-Duty Diesel Engine Undergoing Dilution-Controlled Low-Temperature Combustion

2009-09-13
2009-24-0043
Unburned hydrocarbon (UHC) and carbon monoxide (CO) emission sources are examined in an optical, light-duty diesel engine operating under low load and engine speed, while employing a highly dilute, partially premixed low-temperature combustion (LTC) strategy. The impact of engine load and charge dilution on the UHC and CO sources is also evaluated. The progression of in-cylinder mixing and combustion processes is studied using ultraviolet planar laser-induced fluorescence (UV PLIF) to measure the spatial distributions of liquid- and vapor-phase hydrocarbon. A separate, deep-UV LIF technique is used to examine the clearance volume spatial distribution and composition of late-cycle UHC and CO. Homogeneous reactor simulations, utilizing detailed chemical kinetics and constrained by the measured cylinder pressure, are used to examine the impact of charge dilution and initial stoichiometry on oxidation behavior.
X