Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Optimization of Air Extraction Path for Superior Customer Comfort While Door Closing Event of a Sports Utility Vehicle (SUV)

2023-04-11
2023-01-0601
The passenger car segment has been extremely competitive and automotive OEMs are thriving to provide superior customer experience. Door closing is an event that requires slamming of the door with a certain velocity to get the door latched. A good latching provides that thud sound and assurance of the door getting closed for an SUV. While the door is closed, it pushes the volume of air inside the cabin. As the amount of air moved in is proportionate to the size of the door it becomes more critical for the SUV segment of vehicles to ensure the air extraction path is efficient. Else, steep pressure rise inside the cabin causes severe discomfort to the passengers sitting inside the vehicle. Current work focused on the process of simulation of cabin pressure while door closing, implementing changes based on results and validating with test results. Test results are in close correlation with simulation predictions.
Technical Paper

Vehicle Door Cutline Determination with Mathematical Modelling on CATIA V5

2019-10-11
2019-28-0107
Door shut-line definition is the first vital step in car body door engineering and depends on the hinge position, hinge shape, manufacturing capabilities and other parameters. In the design process, once the hinge axis definition is finalized door shut-line is defined which should satisfy two major requirements. The requirements are clearance between the door outer surface with its surrounding components (like hinges, fender, other door etc.) and assembly feasibility. Another one is the manufacturability of the proposed design. The above conditions must be checked on different locations of the door as well as w.r.t different openings of the door. The paper presents a mathematical model to determine the door shut-line position with great computational efficiency. This method propounds closure engineer with parameters to define the shut line rather than going for cumbersome manual iterative process.
Technical Paper

A Study on Door Clips and Their Influence on BSR Performance

2019-06-05
2019-01-1468
Squeak and rattle concerns account for approximately 10% of overall vehicle Things Gone Wrong (TGW) and are major quality concern for automotive OEM’s. Objectionable door noises are one of the top 10 IQS concerns under any OEM nameplate. Door trim significantly contributes to overall BSR quality perception. Door trim is mounted on door in white using small plastic clips with variable properties that can significantly influence BSR performance. In this paper, the performance of various door clips is evaluated through objective parameters like interface dynamic stiffness and system damping. The methodology involves a simple dynamic system for the evaluation of the performance of a clip design. Transmissibility is calculated from the dynamic response of a mass supported by clip. Parameters such as interface stiffness and system damping are extracted for each clip design. Variation of inner panel thickness is also considered when comparing clip performance.
Technical Paper

Investing Factors Affecting Door Slam Noise of SUV and Improved Performance by DFSS Approach

2011-05-17
2011-01-1595
Recent development in automobile industries has seen increased customer attention for good door slamming noise. One of the constituent which plays major role in building brand image of vehicle in terms of NVH performance is door slam noise quality. Hence it is very desirable to understand how different door elements radiate sound during a door-closing event and how to optimize a door structure to achieve specific sound target in order to ensure the door closing noise quality, NVH engineers needed to look at contributions from different door subsystems. The use of statistical tools like Six Sigma can further help them to ensure the consistency in results. This paper explains the systematic approach used to characterize different element of door which contributes to the overall door slam noise quality through QFD (Quality Function Deployment) and contribution analysis. The different mechanisms contributing to door slam noise were studied.
X