Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Technical Paper

Study of Indirect Heat Pump for an Electric Vehicle

2023-09-14
2023-28-0023
Electric Vehicle is the need of an hour, as due to excessive usage of IC Engine vehicles has resulted in the depletion of the ozone layer to a significant level and fuel cost is increasing. With new technologies coming into the market, challenges come hand in hand because of Electric Vehicle. In comparison to IC Vehicle, areas of thermal management or the number of components for which thermal management needs to be done is higher and rather complex. As the thermal management system is the second highest energy consuming source after the powertrain of the electric vehicle, an efficient and reliable design is mandatory to ensure better range in an Electric Vehicle. Thermal Management of the Electric Vehicle has been identified as one of the critical parameters for balancing both cabin comfort as well as Battery temperature. One of the major concerns is meeting the Cabin comfort during colder weather with minimum energy consumption.
Technical Paper

Simulation of Differential Stroke (D-Cycle) Engine Technology for Agricultural Tractor

2022-03-29
2022-01-0389
Model based calibration is extensively used by the automotive OEMs (Original Equipment manufacturers) because of its correlation accuracy with test data and freezing the operating parameters such as injection timings, EGR rates, fuel quantity etc. The prediction of Brake specific Fuel consumption (BSFC), Exhaust and intake temperatures are very close to test data. The prediction of Brake specific NOx is directionally reliable with acceptable tolerance.
Technical Paper

Integrated Exhaust Manifold Design & Optimization of it through HCF and LCF Simulations for a BS6 Compliant Diesel Engine

2021-10-01
2021-28-0168
This paper discusses design and optimization process for the integration of exhaust manifold with turbocharger for a 3 cylinder diesel engine, simulation activities (CAE and CFD), and validation of manifold while upgrading to meet current BS6 emissions. Exhaust after-treatment system needs to be upgraded from a simple DOC (Diesel Oxidation Catalyst) to a complex DOC+sDPF (Selective catalytic reduction coated on Diesel Particulate Filter) to meet the BS6 emission norms for this engine. To avoid thermal losses and achieve a faster light-off temperature in the catalyst, the exhaust after-treatment (EATS) system needs to be placed close to the engine - exactly at the outlet of the turbocharger. This has given to challenges in packaging the EATS. The turbocharger in case of BS4 is placed near the 2nd cylinder of the engine, but this position will not allow placing the BS6 EATS.
Technical Paper

Improving the Clutch Design Robustness by Virtual Validation to Predict Clutch Energy Dissipation and Temperature in Clutch Housing

2021-09-22
2021-26-0329
During the vehicle launch (i.e. moving the vehicle from “0” speed), the clutch would be slowly engaged by the Driver or Transmission Control Unit (in Automatic Transmission/Automatic Manual Transmission vehicle) for smooth torque transfer between engine and transmission. The clutch is designed to transfer max engine torque with min heat generation. During the clutch engagement, the difference in flywheel and gearbox input shaft speed is called the clutch slipping phase which then leads to a huge amount of energy being dissipated in terms heat due to friction. As a result, clutch surface temperature increases consistently, when the surface temperature crosses the threshold limit, the clutch wears out quickly or burns spontaneously. Hence it is crucial to predict the energy dissipation and temperature variation in various components of clutch assembly through virtual simulation.
Technical Paper

A Case Study of Compressor Surge Related Noise on Turbocharged 2.0-L Gasoline Engine

2021-09-22
2021-26-0282
Till recently supercharging was the most accepted technique for boost solution in gasoline engines. Recent advents in turbochargers introduced turbocharging technology into gasoline engines. Turbocharging of gasoline engines has helped in powertrains with higher power density and less overall weight. Along with the advantages in performance, new challenges arise, both in terms of thermal management as well as overall acoustic performance of powertrains. The study focuses mainly on NVH aspects of turbocharging of gasoline engines. Compressor surge is a most common phenomenon in turbochargers. As the operating point on the compressor map moves closer to the surge line, the compressor starts to generate noise. The amplitude and frequency of the noise depends on the proximity of the operating point to the surge line. The severity of noise can be reduced by selecting a turbocharger with enough compressor surge margin.
Technical Paper

Thermal Performance and Ambient Airside Pressure Drop Prediction for Automotive Charge Air Cooler Using 1-D Simulation

2021-09-15
2021-28-0135
The present work discusses the developed simulation model aimed to predict the heat rejection (HR) performance and external pressure drop characteristics of automotive charge air cooler (CAC). Heat rejection and airside pressure drop characteristics of CAC were predicted for the conditions of different charge air mass flow rates and different cooling air velocities. The lack of detailed research on CAC performance prediction has motivated the development of the proposed simulation model. The present 1-D simulation has been developed based on the signal library of AMESIM application tool. Input parameters for this simulation such as core size, tube pitch, tube height, number of tubes, fin density, louver angle, louver pitch, charge air mass flow rate, cooling air velocity, charge air inlet temperature, and ambient temperature. Heat rejection curve and airside pressure drop of CAC were the output of the present simulation.
Technical Paper

1D Simulation-Based Methodology for Automotive Grill Opening Area Optimization

2021-09-15
2021-28-0133
This paper discusses the methodology setup for grill opening area prediction at the early development phase of the product development lifecycle, using a commercially available 1D simulation tool- AMESIM. Representative under hood has been modeled using Grill, Condenser, Radiator, intercooler, fan, and engine components. Vehicle velocity is used as an input to derive the airflow passing through the grill and other under-hood components based on ram air coefficient, pressure drop through different components (Grill, Heat exchanger, Fan & Engine). This airflow is used to predict the top tank temperature of the radiator. Derived airflow is correlated with airflow obtained from CFD simulation. A balance has been achieved between cooling drag & fan power consumption at different grill opening areas for target top tank temperature. Top tank temperature has been predicted at two different extreme engine heat rejection operating points.
Technical Paper

Under-Hood CRFM and CAC Air Flow Management of Vehicle to Improve Thermal Performance by 1D Method Using Amesim

2021-09-15
2021-28-0140
Currently the Automotive industry demands highly competitive product to survive in the global tough competition. The engine cooling system plays a vital role in meeting the stringent emission norms and improving the vehicle fuel economy apart from maintaining the operating temperature of engine. The airflow through vehicle subsystems like the grille, bumper, the heat exchangers, the fan and shroud and engine bay are called as front-end flow. Front end flow is crucial factor in engine cooling system as well as in determining the aerodynamic drag of vehicle. The airflow through the engine compartment is determined by the front-end vehicle geometry, the CRFM and CAC package, the engine back restriction and the engine compartment geometry including the inlet and outlet sections. This paper discusses the 1D modelling method for front-end airflow rate prediction and thermal performance by 1D method. The underbody components are stacked using heat stack and simulated in pressure mode.
Technical Paper

An Extensive Optimization Methodology to Validate the Exhaust After-Treatment System of a BS VI Compliant Modern Diesel Engine

2020-09-25
2020-28-0483
The Indian automotive industry has migrated from BS IV (Bharat stage IV) to BS VI (Bharat Stage VI) emission norms from 1st April 2020. This two-step migration of the emission regulations from BS IV to BS VI demands significant engineering efforts to design and integrate highly complex exhaust after-treatment system (EATS). In the present work, the methodology used to evaluate the EATS of a high power-density 1.5-liter diesel engine is discussed in detail. The EATS assembly of the engine consists of a diesel oxidation catalyst (DOC), a diesel particulate filter with selective catalytic reduction coating (sDPF), urea dosing module and urea mixer. Typically, all these components that are needed for emission control are integrated into a single canning of shell thickness ~1.5mm. Moreover, the complete EATS is directly mounted onto the engine with suitable mounting brackets on the cylinder block and cylinder head.
Technical Paper

Effect of Variable Geometry Fin in Automotive Condenser Using Analytical and CFD Approach

2020-08-18
2020-28-0028
Major focus was given on the Comfort, Fuel efficiency & Safety during the development of the passenger cars, which certainly drives the vehicle business of Original Equipment Manufacturer (OEM’s). The air Conditioning in a car, plays an important role in the area of comfort of the passengers and fuel efficiency point of view. Especially Heat Exchanger plays a pivotal role in the air conditioning system. So, it’s a challenge for the OEM’s to select and design the optimal heat exchanger from the supplier, which meets the performance and packaging requirements during the design phase of the product development cycle. The objective of this paper to focus on analytical calculation or framework was developed using an excel tool considering the effect of variable geometry of fin which includes louver pitch, louver angle and louver length in a multi-pass condenser. Further, this theoretical calculation was validated using experimental data and CFD simulation.
Technical Paper

UDM Tip Temperature Control Using Thermosyphon Effect

2020-08-18
2020-28-0040
In today’s automobile industry where BS6 emission is posing a high challenge for aggregate development, cost control and with limited timeline. The main target is to provide the cooling system to have less impact on the in terms of cost, weight and to meet the challenging engineering requirement. Thus, the frugal engineering comes into the picture. This paper shows the application of thermosyphon principle for UDM injector cooling thereby reducing the rotation parts and power consumption such as an electric pump. Thermosyphon is a method of passive heat exchange and is based on natural convection, which circulates a fluid without the necessity of a mechanical or electric pump. The natural convection of the liquid commences when heat transfer to the liquid gives rise to a temperature difference from one side of the loop to the other.
Technical Paper

High Durable PU Metallic Monocoat System for Tractor Sheet Metal Application

2019-11-21
2019-28-2541
In sheet metal painting for various applications like tractor and automobiles, most attractive coating is metallic paints. It is widely applied using 3 coat 2 bake or 3 coat 1 bake technology. Both options, results in high energy consumption, higher production through put time and lower productivity in manufacturing process. During various brainstorming and sustainability initiatives, paint application process was identified to reduce burden on environment and save energy. Various other industry benchmarking and field performance requirement studies helped to identify critical quality parameters. There was collaboration with supplier to develop monocoat system without compromising any performance and aesthetic properties. This resulted in achieving better productivity, elimination of two paint layers, substantial reduction in volatile organic content, elimination of one baking cycle and energy saving.
Technical Paper

Design of Light Weight Footstep Using Continuous Glass Fiber Reinforced Plastics

2019-10-11
2019-28-0172
Utility or Off-road vehicles are characterized with their higher ground clearances. Higher ground clearance of vehicle requires the vehicle to have footsteps for easy entry and exit of passengers from the vehicle. A typical foot step construction consists of structural steel brackets with an Aluminum or plastic top panel. Conventional steel construction is heavier to meet weight bearing capacity and durability requirements. Our objective of this work is to explore lightweight materials which can meet these performance requirements with a lighter construction. We chose to study the continuous glass fiber reinforced plastic as an alternative to the metal construction.
Technical Paper

Optimization of Piston Skirt Profile Design to Eliminate Scuffing and Seizure in a Water Cooled Gasoline Engine

2015-04-14
2015-01-1726
Piston is a critical component of the engine as it exposed to high inertial and thermal loads. With the advent of high performance engines, the requirement of the piston to perform in extreme conditions have become quintessential. Piston scuffing is a common engine problem where there is a significant material loss at the piston and the liner, which could drastically affect the performance and the longevity of the components. This detrimental phenomenon would occur if the piston is not properly designed taking into consideration the thermal and structural intricacies of the engine. A water-cooled gasoline engine which had significant wear pattern on its piston skirt and liner was considered for this study. The engine block was made of aluminum alloy with a cast iron sleeve acting as liner. The piston-liner system was simulated through a commercially available numerical code which could capture the piston's primary and secondary motion.
Technical Paper

Effect of Aluminum on Mechanical and Tribological Properties of Automotive Grade Gray Cast Iron

2015-01-14
2015-26-0066
Mechanical and wear properties of Al alloyed gray cast iron (0.5% and 1.0%) were compared with that of Mo (1.0%) and Cu (0.77%) alloyed gray cast iron in this investigation. All the alloys showed pearlitic microstructure. The graphite morphology varied due to varying chemistry. The fracture surface showed “cabbage” like dimpled morphology indicating the predominant ductile fracture. It was found that the Mo containing cast iron show 25 to 30% higher strength and 6 to 7 times better wear resistance compared to Al containing cast irons. The worn surface showed oxide formation during sliding.
Technical Paper

Weight Reduction of Shifter Forks using Steel Inserts

2013-09-24
2013-01-2444
Shift quality of a manual transmission is a critical characteristic that is requires utmost care by the designers while structuring the transmission. Shift quality is affected by many factors viz. synchronizer design, shift fork design, shifter design, gear design, transmission oil selection etc. Designers have realized that shift fork is critical element for improving shift feel of a transmission. This paper focuses upon the reduction in weight of the overall transmission shift system by using steel inserts in aluminum shifter forks. No compromise on the stiffness and strength of the shift fork of a manual transmission is done. Stiffness and strength of shifter fork is optimized using contact pattern analysis and stiffness analysis on MSC Nastran. All the subsystem (i.e. synchronizer and the shift system component) are constrained to optimize the shift fork stiffness. A 5-speed manual transmission is used as an example to illustrate the same.
Technical Paper

A Systematic Approach for Design of Engine Crankcase Through Stress Optimization

2010-04-12
2010-01-0500
The cylinder block for the power train has always been a classic example of concurrent engineering in which disciplines like NVH, Durability, thermal management and lubrication system layout contribute interactively for concept design. Since the concept design is based on engineering judgment and is an estimated design, the design iterations for optimization are inevitable. This paper aims at outlining a systematic approach for design of crankcase for fatigue which would eliminate design iterations for durability. This allows a larger scope for design improvement at the concept stage as the design specifications are not matured at this stage. A process of stress optimization is adopted which gives accurate dimensional input to design. The approach is illustrated with a case study where an existing crankcase was optimized for fatigue and significant weight reduction was achieved.
X