Refine Your Search

Topic

Author

Search Results

Technical Paper

Model Based Charge Control for 3-Cylinder TGDI Miller Engine Containing Variable Geometry Turbocharger

2024-01-16
2024-26-0043
For ensuring environmental safety, strong emphasis on CO2 pollution reduction is mandated which led to evolution of miller cycle engines. However, the inherent Miller engine characteristic is the lower volumetric efficiency when compared to otto engines because of which small turbo chargers with variable geometry turbines are used to induct air into the engine. With miller engine and VGT turbo charger combination arises the challenges of charge controllability because of lower inertia and reduced vane control area. With conventional turbo charger control methods, the response time is slow thereby leading to turbo lag or severe over boosting, this is overcome by accurate engine modelling and using the same as input for charger control.
Technical Paper

Experimental Analysis of Multi-Link Rigid Axle Suspension Camber Variation with Vehicle Load

2024-01-16
2024-26-0054
Increased popularity on SUV category in the market has led to high focus on performance attributes of SUVs. Considering high weight & CoG achieving target handling performance is always a challenge. Static Wheel Alignment parameters, especially Camber have shown significant contribution in Handling attributes of vehicle. This paper presents an experimental study on change in wheel camber under the influence of different vehicle loading conditions. In SUVs, generally wheel is subjected to large deflection from its high static loads which makes it quite difficult to maintain an ideal camber angle. Hence, it is important to analyze the camber angle variations under actual loading conditions. An in-house fixture is developed to emulate the actual vehicle loading conditions at rear wheel end. The multi-link rigid axle suspension with watt’s link assembly is mounted on the chassis-frame which is rigidly fixed to ground, and loads are achieved through hydraulic actuators at Wheels.
Technical Paper

Importance of Casting Soundness in Aluminium Parts for Laser Weld Quality

2024-01-16
2024-26-0191
Light weight and Robust manufacturing technologies are always needed for transformation drive in the Automotive industry for the next-generation vehicles with greater Power to weight ratio. Innovations and process developments in materials and manufacturing processes are key to this light weighting transformation. Aluminium material has been widely used for these light weighting opportunities. However, aluminum joining techniques, characterized by their poor quality and consistency are limiting this transformation. This technical paper represents one of such case, where the part is made up of Aluminium through conventional casting route which has affected the laser weld quality due to poor casting soundness. This experiment explains in detail about the importance of Casting soundness for laser weld quality, weld penetration, strength etc., and the Product consistency.
Technical Paper

NVH Refinement of Structure-Borne Tonal Noise in Electric Vehicle

2024-01-16
2024-26-0198
Globally all OEMs are moving towards electric vehicle to reduce emission and fuel cost. Customers expect highest level of refinement and sophistication in electric vehicle. At present, the customers are sensitive to high pitched tonal noise produced by electric powertrain which gives a lot of challenges to NVH engineers to arrive at a cost-effective solution in less span of time. Higher structure borne tonal noise is perceived in electric vehicle at the vehicle speeds of ~ 28 kmph, 45 kmph and 85 kmph. The test vehicle is front wheel drive compact SUV powered by motor in the front. The electric drive unit is connected to cradle and subframe with help of three mounts. Transfer path analysis (TPA) using blocked forces method is carried out to identify the exact forces of the electric drive unit entering the mounts. Powertrain mount is characterized by applying the predicted forces and dynamic stiffness at problematic frequency is measured.
Technical Paper

Study and Analysis of Dynamic Seat Pressure Distribution by Human Subjects during Vehicle Running State on Test Tracks

2024-01-16
2024-26-0354
The purpose of this study is to conduct dynamic seat pressure mapping on vehicle seats during its operation on different test tracks under ambient environmental conditions for a defined speed. The test track comprises of pave roads, high frequency track, low frequency track and twist track. The variations in pressure distribution on seat during diverse road load inputs help to understand the seat cushion and back comfort for unique percentiles of human subjects ranging from 50th to 95th percentile population. For conducting the study, a sport utility vehicle (SUV) loaded with leatherette seats has chosen. Totally six participants (human subjects), five male and one female selected for the study based on their BMI (Body mass index) and body morphology. Pressure mats suitable for taking dynamic load inputs and able to log the data at a defined sampling rate mounted on seats and secured properly. The pressure mats should cover the seat cushion, bolster areas and back seat completely.
Technical Paper

HVAC NVH Refinement in Electric Vehicle

2024-01-16
2024-26-0206
Customers expect more advanced features and comfort in electric vehicles. It is challenging for NVH engineers to reduce the vibration levels to a great extent in the vehicle without adding cost and weight. This paper focuses on reducing the tactile vibration in electric vehicle when AC is switched ON. Vibration levels were not acceptable and modulating in nature on the test vehicle. Electric compressor is used for cabin cooling and battery cooling in the vehicle. Compressor is connected to body with the help of isolators. Depending upon cooling load, the compressor operates between 1000 rpm and 8000 rpm. The 1st order vibration of compressor was dominant on tactile locations at all the compressor speeds. Vibration levels on steering wheel were improved by 10 dB on reducing the dynamic stiffness of isolators. To reduce the transfer of compressor vibration further, isolators are provided on HVAC line connection on body and mufflers are provided in suction and discharge line.
Technical Paper

An Investigation on High Impact Torque of BEV and Driveshaft Robustness Improvements

2024-01-16
2024-26-0334
The inherent capacity of electric motors to generate substantial instant torque can lead to significant load reversals in electric vehicle driveshafts under specific road conditions and driving maneuvers, highlighting the need for targeted improvements in driveshaft design, particularly in optimizing joint sizing. This paper presents a systematic approach to investigate the root causes of a catastrophic driveshaft failure that occurred during specific vehicle tests on a road with multiple speed bumps, resulting in numerous high torque reversals. The objective was to enhance system robustness through changes in driveshaft design and the manufacturing process, coupled with a software calibration technique to reduce torque demands under such operating conditions. The process encompassed torque measurements at the vehicle level, failure replication on a test rig, and correlation with simulations.
Technical Paper

Evaluation of Fretting Phenomenon in Gearbox and Allied Failures

2022-03-29
2022-01-0648
This paper takes a review of fretting phenomenon on splines of the engaging gears and corresponding splines on shaft of automotive transmission and how it leads to failure of other components in the gearbox. Fretting is a special wear process which occurs at the contact area of two mating metal surfaces when subject to minute relative oscillating motion under vibration. In automotive gearbox, which is subjected to torsional vibrations of the powertrain, the splines of engaging gears and corresponding shaft may experience fretting, especially when the subject gear pair is not engaged. The wear debris formed under fretting process when oxidizes becomes very hard and more abrasive than base metal. These oxidized wear particles when comes in mesh contact with nearby components like bearings, gears etc. may damage these parts during operation and eventually lead to failure.
Technical Paper

Evaluation of Hardtop Roof Mounting Schemes for High Speed Performance and Noise

2021-04-06
2021-01-0292
Customer comfort has been at the core of any vehicle design. A segment of vehicle wherein the provision given for roof to be removed to enhance the customer experience. A similar vehicle is the subject matter for the evaluation here. The vehicle being off-roader, customer buying such vehicles are passionate about these lifestyle vehicle’s performance aspects. The roof components are plastic and are bolted with the BIW structure with sealing in place at the interface. The windshield angle being close to vertical, there is a tendency for flow separation at the front tip of roof, while vehicle driven at speed. This creates significant pressure difference across the roof surface, leading to vertical deformation of roof between the bolted mounts. In case the magnitude of deformations not controlled, the reduced sealing effectiveness lets air gushing in the cabin and make noise which can be audible to customer.
Technical Paper

A Comprehensive Study on the Design and Development Methodology of Automotive Steel Wheel Rims Undergoing Highly Transient Cornering Events

2021-04-06
2021-01-0827
Wheel rim is one of the most critical safety parts in a vehicle. Strength in cornering loading is one of the most important durability test requirements for automotive steel wheel rim apart from other loading conditions like vertical and impact loads. Based on the category of vehicle and customer usage pattern, the accelerated cornering test is derived for testing steel wheel rims. The simulation and certification of steel wheel rim for the required dynamic durability testing requirement involves many steps ranging from acceptance criteria derivation to reliably addressing known potential failure zones in steel wheel rims. Nave radius and crown are sensitive to cornering loads, given the pitch circle diameter at the concept stage, the known effects of these key parameters are determined from DOE and used as reliable indicators to arrive at the shape and section of the steel wheel rim.
Technical Paper

Passenger Car Door Closing Effort Prediction Using Virtual Simulation and Validation

2021-04-06
2021-01-0333
In the automobile industry, the door closing effort spells out the engineering and quality of the vehicle. After the visual impact a vehicle has on the customer, the doors are most likely the very first part of the vehicle he/she encounters, to enter and exit the vehicle. One of the customer’s very first impressions about the quality of the car is given by the behavior of the doors when opening and closing, the swinging velocity and the energy that is required to obtain a full latching that the door makes when closed by the user. Door closing effort gives an indication of how good or bad the vehicle is engineered. The purpose of this paper is to propose modifications in the door system which help in reduction of door closing effort or velocity by two different methods, EZ Slam Door and Bungee Rope. In this paper, parameters like hinge friction, hinge axis inclination, sealing, latch and air bind effect are analyzed which affect door closing effort.
Technical Paper

BIW Multidisciplinary Design Optimization (MDO) with Equivalent Static Load Method - Quick MDO Methodology

2021-04-06
2021-01-0287
Multidisciplinary Design Optimization (MDO) of an automobile body structure is a challenging task as it involves multiple, often conflicting requirements of safety, durability & NVH. Conventionally MDO process requires running large number of design of experiments (DOE) to explore the full design space and to build response surface for optimization. As the safety simulations are highly nonlinear in nature, they typically require significant amount of computational time and resources. Hence the conventional MDO approach is too expensive if too many design variables are simultaneously considered. In this paper, an alternative approach using Equivalent Static Load (ESL) method has been suggested for MDO which is quicker & accurate. The basic idea of the Equivalent Static Load-Method (ESL) is to divide the original nonlinear dynamic optimization problem into an iterative linear optimization and nonlinear analysis process.
Technical Paper

Investigations on the Effect of Synchronizer Strut Detent Groove Profile on Static and Dynamic Gear Shift Quality of a Manual Transmission

2020-09-25
2020-28-0319
Automotive manufacturers are constantly working towards enhancing the driving experience of the customers. In this context, improving the static and dynamic gear shift quality plays a major role in ensuring a pleasant and comfortable driving experience. Moreover, the gear shift quality of any manual transmission is mainly defined by the design of the synchronizer system. The synchronizer sleeve strut detent groove profile plays a vital role in defining the performance of the synchronizer system by generating the minimum required pre-synchronization force. This force is important to move the outer synchronizer ring (blocker ring) to the required index position and to wipe-out the oil from the conical friction surfaces to build rapid high cone torque. Both these functional requirements are extremely critical to have a smooth and quick synchronization of the rotating parts under dynamic shift conditions.
Technical Paper

Unloaded Synchronizer Wear in Manual Transmission Gearbox

2020-09-25
2020-28-0334
Synchronizers are the most critical parts of a manual transmission. There are classical calculations available for the synchronizer design and studies are available for the normal functioning of synchronizer rings which describes how the synchronizer behaves in the event of gear shifting. The objective of this study is to describe the synchronizer behavior when synchronizers are not functional, i.e., in other gear engaged condition and the rings are free. This study describes the failure mechanism of the unused synchronizer rings which are moving freely in the packaging space. The findings of this synchronizer design cannot be limited only for synchronizer performance and standard durability calculations. To ensure proper function of synchronizer rings and to achieve the required life the external parameters like clearances, lubrication, clutch design for dampening torsional vibration from the engine are to be considered.
Technical Paper

Effect of Flange Radius and Width on the Fatigue Life of Wheel Hub under Cornering Loads

2020-04-14
2020-01-1232
Automotive manufacturers are concerned about the safety of its customers. Safety critical components like wheel hub are designed considering the severe loads generated from various customer usage patterns. Accelerated tests, which are derived from Real World Usage Patterns (RWUP), are conducted at vehicle level to ensure the wheel hub meet the durability targets. Load and strain measurement are done to understand the critical lateral loading undergone by the wheel hub. Measured data is synthesized to drive the duty cycle. Finite Element (FE) Analysis of Wheel end is performed at module level considering measured loads to capture the exact load path in physical test. Simulation results are compared with the measured strain for validating the FE analysis procedure. FE analysis was repeated for different wheel hub designs, combinations of different flange radius (R) and flange width (t), to understand the effect of the two critical dimensions on wheel hub durability.
Technical Paper

Manufacturing of Transmission Quill Gear by Sinter Hardening

2019-01-09
2019-26-0165
Transmission quill gears are hot forged steel parts often used in constant mesh manual transmissions. The quill gear, which helps to transmit the power from input drive shaft to output shaft through driving gears. It’s having external teeth which is positively engaged with driving gear and sleeve. During gear selection sleeve take load from input shaft and transmit to driven gear. Quill gear directly engaged with driving gears on outer surface and bearing in inner surface which needs to have high strength and durability. These properties can be improved by carburization heat treatment in existing design such processes can lead to increased costs. We have developed quill gear through powder metallurgical process and then cooled rapidly in the furnace to get high strength and wear properties. Material composition are optimized to suit for sinter hardening process conditions.
Technical Paper

Identification and Resolution of Vehicle Pull and Steering Wobble Using Virtual Simulation and Testing

2018-10-05
2018-01-1895
A vehicle drifts due to several reasons from its intended straight path even in the case of no steering input. Vehicle pull is a condition where the driver must apply a constant correction torque to the steering wheel to maintain a straight-line course of the vehicle. This paper presents an investigation study into the characteristics of a vehicle experiencing steering drift. The aim of the work is to study vehicle stability and the causes of vehicle drift/pull during straight line to minimize vehicle pull level and hence optimize safety measures. A wobble in the steering wheel feels like the steering wheel is shaking to the left and right. This may get worse, if speed increases. This paper focuses on modelling and evaluating effects of suspension parameters, differential friction, brake drag variation, Unbalanced mass in the wheel assembly and C.G. location of the vehicle under multibody dynamic simulation environment.
Technical Paper

Front Loading of Foot Swing Envelop during Egress to Vehicle Architecture

2017-07-10
2017-28-1960
In automotive industry, design of vehicle to end customer with proper ergonomics and balancing the design is always a challenge, for which an accurate prediction of postures are needed. Several studies have used Digital Human Models (DHM) to examine specific movements related to ingress and egress by translating complex tasks, like vehicle egress through DHMs. This requires an in-depth analysis of users to ensure such models reflect the range of abilities inherent to the population. Designers are increasingly using digital mock-ups of the built environment using DHMs as a means to reduce costs and speed-up the “time-to-market” of products. DHMs can help to improve the ergonomics of a product but must be representative of actual users.
Technical Paper

Novel, Compact and Light Weight Plenum Assembly for Automobiles

2017-07-10
2017-28-1924
Plenum is the part located between the front windshield and the bonnet of an automobile . It is primarily used as an air inlet to the HVAC during fresh air mode operation. It’s secondary functions include water drainage, aesthetic cover to hide the gap between windshield to bonnet, concealing wiper motors and mechanisms etc. The plenum consists mainly two sub parts viz. upper plenum and lower plenum. Conventional plenum design which is found in majority of global OEMs employ a plastic upper plenum and a metal lower plenum which spans across the entire width of engine compartment. This conventional lower plenum is bulky, consumes more packaging space and has more weight. In this paper, we propose a novel design for the plenum lower to overcome above mentioned limitations of the conventional design. This novel design employs a dry and wet box concept for its working and is made up of complete plastic material.
Technical Paper

Scaling Model of Heat Exchangers in Automotive Air Conditioning Systems

2016-04-05
2016-01-0227
Heat exchangers are thermoregulatory system of an automotive air conditioning system. They are responsible for heat exchange between refrigerant and air. Sizing of the heat exchanger becomes critical to achieve the required thermal performance. In the present work, the behavior of heat exchanger with respect to change in size is studied in detail by developing a scaling model. The limited experiments have been conducted for 3 different condensers. Commercially available 1D tool GT Suite is used for simulations. The heat exchangers are modeled using COOL3D module of GT Suite. The experimental thermal capacities of heat exchanger are compared with the simulated values. A good agreement up to ±2.3% is found between the experiments and simulations. Then developed scaling model in GT Suite is used for predicting the thermal behavior of heat exchangers by changing the size of the heat exchanger. Scaled thermal capacities of each model is compared with the corresponding experimental results.
X