Refine Your Search

Topic

Author

Search Results

Technical Paper

Weight and Drivetrain Optimization via Fuel Pump & Vacuum Pump Drive Integration on Engine Camshaft in a Pushrod Type Valve Actuated Engine

2024-01-16
2024-26-0046
In the realm of modern powertrains, the paramount objectives of weight reduction, cost efficiency, and friction optimization drive innovation. By streamlining drive trains through component minimization, the paper introduces a groundbreaking approach: the integration of fuel pump and vacuum pump drive systems into the main camshaft of a two-valve-per-cylinder push-rod actuated 4-cylinder diesel engine. This innovation is poised to concurrently reduce overall weight, lower costs, and minimize drive losses. The proposed integration entails the extension of the camshaft with a tailored slot, accommodating a three-lobed cam composed of advanced materials. This novel camshaft configuration enables the unified propulsion of the oil pump, vacuum pump, fuel pump, and valve train, effectively consolidating functions and components.
Technical Paper

Effect of Lift Axle Suspension Design on Heavy Commercial Vehicle Handling Performance

2024-01-16
2024-26-0049
The cost of fuels used for automobile are rising in India on account of high global crude oil prices. The fuel cost constitutes major portion of total cost of operation for Heavy commercial vehicles. Hence, the trend is to carry the goods transport through higher payload capacity rigid/straight trucks that offer lower transportation cost per unit of goods transported. This is driving the design of multi-axle heavy trucks that have lift axles. In addition, improved network of highways and road infrastructure is leading to increase in average operating speed of heavy commercial vehicles. It has made increased focus on occupant as well as road safety while designing the heavy trucks. Hence, the analysis of lift axle suspension from the point of view of vehicle handling and stability is essential. There are two basic kinds of lift axle designs used in heavy commercial vehicles: self-steered lift axle having single tire on each side and non-steered lift axle with dual tires on each side.
Technical Paper

Experimental Analysis of Multi-Link Rigid Axle Suspension Camber Variation with Vehicle Load

2024-01-16
2024-26-0054
Increased popularity on SUV category in the market has led to high focus on performance attributes of SUVs. Considering high weight & CoG achieving target handling performance is always a challenge. Static Wheel Alignment parameters, especially Camber have shown significant contribution in Handling attributes of vehicle. This paper presents an experimental study on change in wheel camber under the influence of different vehicle loading conditions. In SUVs, generally wheel is subjected to large deflection from its high static loads which makes it quite difficult to maintain an ideal camber angle. Hence, it is important to analyze the camber angle variations under actual loading conditions. An in-house fixture is developed to emulate the actual vehicle loading conditions at rear wheel end. The multi-link rigid axle suspension with watt’s link assembly is mounted on the chassis-frame which is rigidly fixed to ground, and loads are achieved through hydraulic actuators at Wheels.
Technical Paper

Regeneration Calibration for Optimum Range and Effective Brakes Performances in eSUV

2024-01-16
2024-26-0110
Regenerative braking is an effective approach for electric vehicles (EVs) to extend their driving range. To enhance the braking performances and regenerative energy, regenerative braking control strategy based on multi objective optimization is explained in this paper. This technical paper would be focusing on extracting optimum Range with effective brake performances without affecting drivability and performances in different drives modes. An extensive research study on public road driving patterns is done to understand the percentage utilization of brakes at various (low-mid-high) speeds as per the customer driving behavior. Multi-Objective optimization function with three vital factors is defined where output generated power, torque smoothness and current smoothness are selected as optimization objective to improve the driving range, braking comfort, and battery lifetime respectively.
Technical Paper

An Investigation on High Impact Torque of BEV and Driveshaft Robustness Improvements

2024-01-16
2024-26-0334
The inherent capacity of electric motors to generate substantial instant torque can lead to significant load reversals in electric vehicle driveshafts under specific road conditions and driving maneuvers, highlighting the need for targeted improvements in driveshaft design, particularly in optimizing joint sizing. This paper presents a systematic approach to investigate the root causes of a catastrophic driveshaft failure that occurred during specific vehicle tests on a road with multiple speed bumps, resulting in numerous high torque reversals. The objective was to enhance system robustness through changes in driveshaft design and the manufacturing process, coupled with a software calibration technique to reduce torque demands under such operating conditions. The process encompassed torque measurements at the vehicle level, failure replication on a test rig, and correlation with simulations.
Technical Paper

Aggressive Catalyst Heating Strategy Using Advanced Mixture Formation and Combustion Timing Techniques in a GDI Engine

2021-09-22
2021-26-0185
Precise control over mixture formation withhigh fuel pressure and multiple injections allows Gasoline Direct Injection (GDI) engines to be operated satisfactorily at extreme conditions wherePort Fuel Injection (PFI) engines wouldnormally struggle due to combustion instability issues. Catalyst heating phase is one such important condition which is initiated after a cold engine start to improve the effectiveness of the three-way catalyst (TWC). For a given TWC specification, fast light-offof TWC is achieved in the catalyst heating phase by increasing the exhaust gas temperature with higher exhaust mass flow. The duration of this phase must be as short as possible, as it is a trade-off between achieving sufficient TWC light off performance and fuel efficiency.
Technical Paper

Effect of Steel Wheel Disc Hat Profile and Vent Hole Shape on Fatigue Life in Cornering Test

2021-04-06
2021-01-0934
Automotive steel wheel is a critical component for human safety. For validating steel wheel various tests will be performed at component and vehicle level. Cornering test performed at vehicle level is one of the tests, where wheel will be validated for high cornering loads. Cornering test performed at vehicle level consists of three different events i.e., rotations of vehicle in track1, rotations of vehicle track 2 and rotations of vehicle in track3. As wheel will experience different loading in each of the events of cornering test, correlating the virtual Finite Element Analysis (FEA) with physical test is quite challenging. If in FEA we can predict the damage and life very near to the physical validation, we can create a safe wheel for high cornering loads without any test concerns. Vent hole shape and Hat depth are two important aspects in wheel disc design. Vent hole shape and size will influence the heat dissipation of braking.
Technical Paper

A Comprehensive Study on the Design and Development Methodology of Automotive Steel Wheel Rims Undergoing Highly Transient Cornering Events

2021-04-06
2021-01-0827
Wheel rim is one of the most critical safety parts in a vehicle. Strength in cornering loading is one of the most important durability test requirements for automotive steel wheel rim apart from other loading conditions like vertical and impact loads. Based on the category of vehicle and customer usage pattern, the accelerated cornering test is derived for testing steel wheel rims. The simulation and certification of steel wheel rim for the required dynamic durability testing requirement involves many steps ranging from acceptance criteria derivation to reliably addressing known potential failure zones in steel wheel rims. Nave radius and crown are sensitive to cornering loads, given the pitch circle diameter at the concept stage, the known effects of these key parameters are determined from DOE and used as reliable indicators to arrive at the shape and section of the steel wheel rim.
Technical Paper

Effect of Flange Radius and Width on the Fatigue Life of Wheel Hub under Cornering Loads

2020-04-14
2020-01-1232
Automotive manufacturers are concerned about the safety of its customers. Safety critical components like wheel hub are designed considering the severe loads generated from various customer usage patterns. Accelerated tests, which are derived from Real World Usage Patterns (RWUP), are conducted at vehicle level to ensure the wheel hub meet the durability targets. Load and strain measurement are done to understand the critical lateral loading undergone by the wheel hub. Measured data is synthesized to drive the duty cycle. Finite Element (FE) Analysis of Wheel end is performed at module level considering measured loads to capture the exact load path in physical test. Simulation results are compared with the measured strain for validating the FE analysis procedure. FE analysis was repeated for different wheel hub designs, combinations of different flange radius (R) and flange width (t), to understand the effect of the two critical dimensions on wheel hub durability.
Technical Paper

Life Estimation and Thermal Management of a 48V Mild-Hybrid Battery Pack

2019-04-02
2019-01-1001
The 48V mild-Hybrid system uses a 48V Lithium - Ion battery pack to boost the engine performance, to harness recuperative energy and to supply the accessory boardnet power requirement. Thermal management of the 48V battery pack is critical for its optimal utilization to realize the mild hybrid functionality, to meet CO2 reduction targets and useful life particularly under usage in hot ambient conditions. This paper discusses the various challenges and options of thermal management for the 48V battery pack based on the usage pattern and environmental conditions. The lifetime for a passively cooled battery pack is estimated for a typical Indian usage pattern. Active-air cooling is evaluated for the thermal management of the 48V mild-Hybrid battery pack. The tradeoffs are compared in terms of availability of hybrid functions and battery life.
Technical Paper

Experimental Investigation on the Effect of Tire Pressure on Ride Dynamics of a Passenger Car

2019-04-02
2019-01-0622
Ride is essentially the outcome of coupled dynamics of various involved sub-systems which make it too complex to deal analytically. Tires, amongst these, are known to be highly nonlinear compliant systems. Selection of tires specifications such as rated tyre pressure, etc. are generally decided through subjective assessment. While experts agree that tyre pressure affects the attributes such as ride to a noticeable degree, the quantification of the change often remains missing. In the current work, vibration levels of various sub-systems relevant to ride in an SUV are measured for three different tyre pressures at different speeds over the three randomly generated roads. For the purpose, artificial road profiles of classes A, B and C are synthesized from the spectrum of road classes defined in ISO 8608:2016 and reproduced on a four-poster test rig.
Technical Paper

Identification and Resolution of Vehicle Pull and Steering Wobble Using Virtual Simulation and Testing

2018-10-05
2018-01-1895
A vehicle drifts due to several reasons from its intended straight path even in the case of no steering input. Vehicle pull is a condition where the driver must apply a constant correction torque to the steering wheel to maintain a straight-line course of the vehicle. This paper presents an investigation study into the characteristics of a vehicle experiencing steering drift. The aim of the work is to study vehicle stability and the causes of vehicle drift/pull during straight line to minimize vehicle pull level and hence optimize safety measures. A wobble in the steering wheel feels like the steering wheel is shaking to the left and right. This may get worse, if speed increases. This paper focuses on modelling and evaluating effects of suspension parameters, differential friction, brake drag variation, Unbalanced mass in the wheel assembly and C.G. location of the vehicle under multibody dynamic simulation environment.
Technical Paper

Generating a Real World Drive Cycle–A Statistical Approach

2018-04-03
2018-01-0325
Drive cycles have been an integral part of emission tests and virtual simulations for decades. A drive cycle is a representation of running behavior of a typical vehicle, involving the drive pattern, road characteristics and traffic characteristics. Drive cycles are typically used to assess vehicle performance parameters, perform system sizing and perform accelerated testing on a test bed or a virtual test environment, hence reducing the expenses on road tests. This study is an attempt to design a relatively robust process to generate a real world drive cycle. It is based on a Six Sigma design approach which utilizes data acquired from real world road trials. It explicitly describes the process of generating a drive cycle which closely represents the real world road drive scenario. The study also focuses on validation of the process by simulation and statistical analysis.
Technical Paper

Front Loading In-Vehicle Traffic Light Visibility Requirements for Driver as per Indian Road Standards

2017-07-10
2017-28-1932
Traffic awareness of the driver is one of the prime focus in terms of pedestrian and road safety. Driver experience plays a significant role and driving requires careful attention to changing environments both within and outside the vehicle. Any lapse in driver attention from the primary task of driving could potentially lead to an accident. It is observed that, lack of attention on the ongoing traffic and ignorant about the traffic information such as traffic lights, road signs, traffic rules and regulations are major cause for the vehicle crash. Traffic signals & signage are the most appropriate choice of traffic control for the intersection, it is important to ensure that driver can see the information far away from the intersection so that he/she can stop safely upon viewing the yellow and red display. Then, upon viewing the signal operations and conditions the motorist can stop his/her vehicle successfully before entering the intersection.
Technical Paper

Verification of Non-ABS Vehicle Performance with Real Time Suspension Deflection

2016-09-18
2016-01-1934
Fierce competition in India’s automotive industry has led to constant production innovation among manufactures. This has resulted in the reduction of the life cycle of the design philosophies and design tools. One of the performance factors that have continues to challenge automotive designer is to design and fine tune the braking performance with low cost and short life cycle. Braking performance of automotive vehicle is facilitated by the adhesion between the tyre and the ground. Braking force generated at the wheels of a vehicle have to appropriately match to the adhesion. Antilock braking system (ABS) is used for this purpose. ABS is a modern braking system which could significantly improve directional stability and reduce stopping distance of a vehicle. However this system still too complicated and expensive to use in low end compact car and pickup truck.
Technical Paper

Prediction of Engine Thermal Behavior during Emission Cycle Using 1D Four Point Mass Model

2016-04-05
2016-01-0197
The traditional approach of engine thermal behavior of engine during startup has largely been dependent on experimental studies and high fidelity simulations like CFD. However, these techniques require considerable effort, cost and time. The low fidelity simulations validated with experimental results are becoming more popular due to their ease in handling the several parameters such as cost effectiveness and quick predictive results. A four point mass model of engine thermal behavior during cold start has been developed to study the engine warm up temperature behavior. The four point mass model considers the lumped mass of coolant, mass of engine directly associated with the coolant, mass of engine oil and mass of engine directly associated with the engine oil. The advantage of four point model is to predict the coolant temperature as well as lubricant temperature during the transient warm up cycle of the engine.
Technical Paper

Migration Phenomenon in Gear Teeth of Hypoid Crown Wheels (Ring Gears) - Controlling and Eliminating the Same in Manufacturing

2016-02-01
2016-28-0214
The paper talks about the migration phenomenon that is observed in gears. The phenomenon discussed here is that observed on hypoid gears which due to their high spiral angles cause the issue to be more sensitive, but the analogy to other gears is applicable. Mahindra manufactures hypoid gear sets for its axles in-house that go on a wide range of its products; with performance benefits also come the stringent quality requirements for hypoid gear sets. Migration is the phenomenon that causes the furling or unfurling of individual gear teeth with respect to each other. This in effect causes the circular tooth spacing between two teeth to become non-uniform. This has a direct effect on the performance of the mated gear set.
Technical Paper

Low Temperature Thermal Energy Storage (TES) System for Improving Automotive HVAC Effectiveness

2015-04-14
2015-01-0353
The prime focus of automotive industries in recent times is to improve the energy efficiency of automotive subsystem and system as whole. Harvesting the waste energy and averaging the peak thermal loads using thermal energy storage (TES) materials and devices can help to improve the energy efficiency of automotive system and sub-system. The phase change materials (PCM) well suit the requirement of energy storage/release according to demand requirement. One such example of TES using PCM is extended automotive cabin comfort during vehicle idling and city traffics including start/stop of the engine at traffic stops. PCM as TES poses high density and capacity in thermal energy storage and release. It is due to latent heat absorption and release during phase change. Generally the latent heat of a material compare to it sensible heat is much higher, almost an order of 2. For example, latent heat of ice is almost 160 times higher than sensible heat for a kelvin temperature rise of ice.
Technical Paper

Underbody Drag Reduction Study for Electric Car Using CFD Simulations

2015-01-14
2015-26-0211
Electric cars are the future of urban mobility which have very less carbon foot print. Unlike the conventional cars which uses BIW (Body in White), some of the electric cars are made with a space frame architecture, which is light weight and suitable for low volume production. In this architecture, underbody consists of frames, battery pack, electronics housing and electric motor. Underbody drag increases due to air entrapment around these components. Aerodynamic study for baseline model using CFD simulations showed that there was a considerable air resistance due to underbody components. To reduce the underbody drag, different add-ons are used and their effect on drag is studied. A front spoiler (air dam) is used to deflect the incoming air towards sides of the car. A under hood cover for front components, trailing arm cover for trailing arm and rear bumper cover for rear components were used to reduce underbody drag.
Technical Paper

Design Improvement of Differential Casing through CAE Strain Correlation

2014-04-01
2014-01-0756
A differential casing is one of the important elements in the vehicle power train, whose objective is to house differential gears and take different loads coming from these gears. The function of a differential is to drive a pair of wheels while allowing them to rotate at different speeds. While taking a turn, the outer wheel needs to travel more compared to the inner wheel. This is possible due to the differential which rotates them at different speeds. This Paper highlights a simplified methodology to capture the differential casing failure and to resolve the same. The methodology adopted was then correlated with the test measurements to increase the confidence. During physical tests, strains are measured at different orientations of the differential casing and correlated with simulation results.
X