Refine Your Search

Topic

Search Results

Technical Paper

Investigation on Fuel Economy Benefits by Lubrication System Optimization for a High Performance 2.2 L Diesel Engine

2024-04-09
2024-01-2415
Lubrication systems play a major role not only in the durability of modern IC engines but also in performance and emissions. The design of the lubrication system influences the brake thermal efficiency of the engine. Also, efficient lubrication reduces the engine's CO2 emissions significantly. Thus, it is critical for an IC engine to have a well-designed lubrication system that performs efficiently at all engine operating conditions. The conventional lubrication system has a fixed-displacement oil pump that can cater to a particular speed range. However, a fully variable displacement oil pump can cater to a wide range of speeds, thereby enhancing the engine fuel efficiency as the oil flow rates can be controlled precisely based on the engine speed and load conditions. This paper primarily discusses the optimization of a lubrication system with a Variable Displacement Oil Pump (VDOP) and a map-controlled Piston Cooling Jet (PCJ) for a passenger car diesel engine.
Technical Paper

Holistic Design Approach of Rocker Arm in Aluminum, Sheet Metal & Plastic Materials for Heavy Duty Commercial Application

2023-04-11
2023-01-0440
Diesel engines are known for their excellent low-end torque, better drivability, performance, and better fuel economy. The increase in customer demands pushes to deliver higher power and torque along with fuel economy. This requirement puts a great challenge on the overall weight of the engine. This paper explains the holistic approach followed along with optimizing the rocker arm cover to achieve the weight target without compromising on durability and cost in the commercial segment 2.5-liter Diesel Engine. This paper presents a complete overview of the design and development of Rocker Arm (RA) cover to meet Strength, Durability, NVH and Aesthetic in Commercial Engine where base design is in aluminum which is mounted on cylinder head with a separate breather system. From aluminum the base design of Rocker arm cover is optimized to sheet metal where in there is reduction of 43% in weight and cost saving of 13%.
Technical Paper

Investigation Of Variable Displacement Oil Pump and Its Influence on Fuel Economy for a 1.5 L, 3 Cylinder Diesel Engine

2023-04-11
2023-01-0465
The Introduction of Corporate Average Fuel Economy (henceforth will be addressed as CAFE) regulations demand suitable technological upgrades to meet the significant increase in targets of vehicle fleet fuel economy. Engine Downsizing and Friction Reduction measures help in getting one step closer to the target. In a Conventional Oil Pump, the pump discharge flow and pressure are a direct function of operating speed. There is no control over lubricant flow which results in increased power and fuel consumption due to its unnecessary pumping characteristics irrespective of the actual engine demand. This paper discusses the introduction of a variable displacement oil pump (henceforth will be addressed as VDOP) that was adapted to a 1.5-liter 3 Cylinder Diesel Engine. This approach helps the system to reduce parasitic losses as the oil flow is regulated based on the mechanical needs of the engine. The flow is regulated with help of a solenoid valve which receives input from the ECU.
Journal Article

Fuel Injector Selection in Diesel Engine for BS6 Upgradation

2022-03-29
2022-01-0441
For meeting the stringent BS VI emissions in a 3-cylinder diesel engine the Exhaust after treatment system (EATS) was upgraded from a single brick DOC (diesel oxidation catalyst) to 2 brick DOC+sDPF (Diesel Particulate Filter) configuration. To meet the demands of emission regulation and sDPF requirements, changes were also required in the Fuel injection system. Major changes were done to the fuel injector and fuel pump. This paper primarily discusses the Fuel injector change from 1.1 to 2.2 family with changes in nozzle geometry, Nozzle tip protrusion (NTP), and injector cone angle and the effects on the emission and performance parameters. The various design values of NTP, cone angle, and Sac values are tested in an actual engine to meet the required power, torque and verified to meet NOx, HC, PM values as required by the new BS (Bharat Stage) VI regulation. Other boundary conditions are also checked - BSFC (Brake Specific Fuel Consumption), temperature, etc.
Technical Paper

Assessing the Effect of Torque Converter Losses on the NOx Emission and Engine Stability in TGDI AT Vehicle

2021-10-01
2021-28-0185
The emission norms around the world are continuously changing and getting stringent with every revision. India is on its way to make its emission norms at par with that prevailing in the developed nations. The cold-start condition is an important factor affecting vehicle emissions from gasoline direct injection (GDI) and port fuel injection (PFI) vehicles. In this paper, the effects of change in torque converter losses on emissions are experimentally investigated in a TGDI AT vehicle. The instant engagement of the torque converter puts a sudden load on the engine and thus affects its stability. Thus, to overcome the stability issue, Engine Torque has to be simultaneously increased for smooth engagement. As a result, the likelihood of the slightly leaner air-fuel mixture in the cylinder, which results in higher NOx formation, is much greater in an AT vehicle than that of a similar MT vehicle.
Technical Paper

Aerodynamic Performance Assessment on Typical SUV Car Model by On-Road Surface Pressure Mapping Method

2021-10-01
2021-28-0188
Aerodynamics of on-road vehicles has come to the limelight in the recent years. Better aerodynamic design of vehicle would improve vehicle fuel efficiency with increased acceleration performance. To obtain best aerodynamic body, the series of design modifications and different testing methodologies must be involved in vehicle design and validation phase. Wind tunnel aerodynamic force measurement, road load determination and computational fluid dynamics were the common methods used to evaluate the aerodynamic behavior of the vehicle body. As a novel approach, the present work discusses about the on-road (Real time) testing methodology that is aimed to evaluate the aerodynamic performance of vehicle body using surface pressure mapping. A 64-Channel digital pressure scanner has been utilized in this work for mapping the pressure at different locations of the typical vehicle body.
Technical Paper

Engine out Particulate Emission Optimization with Multiple Injection Strategy for 3-Cylinder Turbo GDI E6d Engine

2021-09-22
2021-26-0070
With the increase in the number of automobiles on road, there is a very strong emphasis on reducing the air pollution which led to evolution of stringent emission norms. To meet these stringent emission norms, the ideal solution is to optimize the engine hardware and the combustion system to reduce the emission at source thereby reducing the dependency on exhaust after treatment system. Gasoline Direct Injection (GDI) engines are gaining popularity worldwide as they provide a balance between fun to drive and fuel efficiency. Controlling the particle emissions especially Particle Number (PN) is a challenge in GDI engines due to the nature of its combustion system. In this study, experiments were performed on a 1.2Litre 3-cylinder 250bar GDI engine to capture the effect of injection strategies on PN.
Technical Paper

Under-Hood CRFM and CAC Air Flow Management of Vehicle to Improve Thermal Performance by 1D Method Using Amesim

2021-09-15
2021-28-0140
Currently the Automotive industry demands highly competitive product to survive in the global tough competition. The engine cooling system plays a vital role in meeting the stringent emission norms and improving the vehicle fuel economy apart from maintaining the operating temperature of engine. The airflow through vehicle subsystems like the grille, bumper, the heat exchangers, the fan and shroud and engine bay are called as front-end flow. Front end flow is crucial factor in engine cooling system as well as in determining the aerodynamic drag of vehicle. The airflow through the engine compartment is determined by the front-end vehicle geometry, the CRFM and CAC package, the engine back restriction and the engine compartment geometry including the inlet and outlet sections. This paper discusses the 1D modelling method for front-end airflow rate prediction and thermal performance by 1D method. The underbody components are stacked using heat stack and simulated in pressure mode.
Technical Paper

Innovative Approach of Reducing Vibration Stress in High Pressure Fuel Injection Pipe and Fuel Injector Using Vibration Dampers in Two Cylinder Diesel Engine

2021-04-06
2021-01-0686
Design and development of high-pressure pipe involves number of design validation plans for robust design in diesel engine. The fundamental behavior of two-cylinder diesel engine with parallel stroke involves high vibration which generates stress on components mounted on crankcase resulting into earlier fatigue failure. In this paper, the innovative approach of using optimized design of vibration damper for resolving high vibration stress concerns in fuel system is discussed. The vibration dampers were designed meeting both performance and durability aspects in two-cylinder diesel engine applicable for both passenger and commercial vehicle. This paper highlights the design approach involving experimental stress measurements and design optimization based on part development feasibility.
Technical Paper

An Optimal Method for Prediction of Engine Operating Points for an Effective Correlation in Fuel Economy Benchmarking

2020-09-25
2020-28-0346
It is imperative that all automobile manufacturers conduct vehicle level benchmarking at the initial stage of any new project. From the benchmark information, the manufacturers can set relevant targets for their own vehicles under development. In this regard, an accurate prediction of the engine operating points can improve the correlation of the measured fuel economy of the benchmark vehicle. The present work describes a novel method that can be used for the accurate prediction of the engine operating points of any benchmark vehicle. Since the idea of instrumenting the crankshaft/driveshaft with torque transducers is a costlier and time-consuming process, the proposed method can be effective in reducing the benchmarking. Hence, the objective of this work is to develop a mathematical model to calculate the real-time engine operating points (engine speed and torque) using parameters like vehicle speed, accelerator pedal map, driveline inertia, vehicle coastdown force and gradient.
Technical Paper

Effect of Injector Cone Angle and NTP on Performance and Emissions of BS6 Engine

2019-10-11
2019-28-0108
The combustion phenomenon of diesel engines has got a very major impact on the performance and exhaust emission levels. Several important factors like engine components design, combustion chamber design, Exhaust gas recirculation, exhaust after treatments systems, engine operating parameters etc. decide the quality of combustion. The role of fuel injector is crucial on achieving the desired engine performance and emissions. Efficient combustion depends on the quantity of fuel injected, penetration, atomization and optimum timing of injection. The nozzle through flow, cone angle, no of sprays and nozzle tip penetration are the factors which lead to the selection of perfect injector for a given engine. This paper focusses on the selection of the best fit injector suiting the BS6 application on evaluating the performance and emission characteristics. Injectors used were with varying cone angles and NTP.
Technical Paper

Reduction of Emissions and Noise Variations by Adjustment of Fuel Injection Quantity

2019-10-11
2019-28-0002
Fuel injection system is a very sensitive structure deciding the optimum quantity of fuel to be injected for combustion process with acceptable accuracy. Learning of fuel quantity with respect to injection type, duration, number of injections requires proper correction values in order to reduce the variation which would result in dissimilar emissions and performance. Deviation of injection quantities are inevitable due to the variations in production tolerance of the injectors. This study focuses on the maximum reduction in fuel quantity which avoids deviation of soot emissions with three different sets of injectors statistically deviating from the ideal pilot fuel quantity. Three sets of injectors deviating from the mean value were chosen and named as Min sample, Mean sample and Max sample. Min sample was with lower injection quantity than the actual and max sample was with higher injection quantity than actual quantity.
Technical Paper

Parametric Calculation and Significance of Engine Dynamic Torque in Performance Benchmarking of a Vehicle

2019-10-11
2019-28-0028
The automotive industries around the world is undergoing massive transformation towards identifying technological capabilities to improve vehicle performance. In this regard, the engine dynamic torque plays a crucial role in defining the transient performance and drivability of a vehicle. Moreover, the dynamic torque is used as a visualization parameter in performance prediction of a vehicle to set the right engineering targets and to assess the engine potential. Hence, an accurate measurement and prediction of the engine dynamic torque is required. However, there are very few methodologies available to measure the engine dynamic torque with reasonable accuracy and minimum efforts. The measurement of engine brake torque using a torque transducer is one of the potential methods. However, it requires a lot of effort and time to instrument the vehicle. It is also possible to back-calculate the engine torque based on fuel injection quantity and other known engine parameters.
Technical Paper

Reduction of Diesel Engine Combustion Noise through Various Injection Strategies

2019-01-09
2019-26-0211
The contribution of engine borne noise is the major source of vehicle noise in diesel powered vehicles. The engine noise can be minimized by modification of engine components design and also with different acoustic abatement techniques. The research activities were carried out on 4-cylinder CRDe engine for SUV application. All the emission and performance parameters along with combustion noise was captured continuously for all the part load points from 1000 RPM to 2750 RPM with respect to the different road conditions and driving cycle. This paper targets on reducing the combustion noise at the noise prone zones only on the basis of the injection strategies ensuring no ill effect on the emissions and fuel economy. The first step was the reduction of rail pressure which helped noise levels to be reduced by almost 6 dB at noise zones. Main injection timing retardation was tried at all possible zones which influenced in considerable noise reduction at various zones.
Technical Paper

Optimization of EGR Mixer to Minimize Thermal Hot Spot on Plastic Duct & Soot Deposition on Throttle Valve Using CFD Simulation

2019-01-09
2019-26-0286
In recent time, with inception of BS VI emission regulation with more focus on fuel economy and emission, many engine parts which were conventionally made from metal are getting replaced with plastic components for reducing weight to attain better fuel economy. EGR is commonly used technique to reduce emissions in diesel engine along with after treatment devices. EGR reduces peak combustion temperature inside the combustion chamber thereby reducing NOx. EGR is bypassed from the exhaust manifold, cooled down in EGR cooler and mixed with intake air at upstream of the intake manifold. Throttle valve is used for controlling the charged air flow to cylinders for different vehicle operating conditions. With compact engine layout EGR mixer are often located near to throttle valve thereby increasing the possibility of soot deposition on throttle valve.
Technical Paper

Determination of Principal Variables for Prediction of Fuel Economy using Principal Component Analysis

2019-01-09
2019-26-0359
The complexity of Urban driving conditions and the human behavior introduces undesired variabilities while establishing Fuel economy for a vehicle. These variabilities pose a great challenge while trying to determine that single figure for assessment of vehicle’s fuel efficiency on an urban driving cycle. This becomes even more challenging when two or more vehicles are simultaneously evaluated with respect to a reference vehicle. The attempt to fit a generalized linear model, between Fuel Economy as predicted variable and components of a driving cycle as predictor variables produced oxymoronic and counter-institutive results. This is primarily due to existence of multi-collinearity among the predictor variables. The context of the study is to consider the event of driving on a cycle as a random sampling experiment. The outcome of a driving cycle is summarized into a list of predictor variables or components.
Technical Paper

Evaluation and Selection of Turbocharger Meeting BS6 Emission Norms for 1.99l Engine

2019-01-09
2019-26-0058
Migration to BS6 emission norms from BS4 levels involves strenuous efforts involving advanced technology and higher cost. The challenging part is on achieving the stringent emission norms without compromising the engine fuel economy, performance and NVH factors. Selection of hardware and attaining an optimal behaviour is therefore vital. This article focuses on the evaluation of three different configuration of turbochargers for the same engine to meet the BS6 emission norms and performance. The turbocharger samples used measure the same compressor diameter with varying trim ratios. Simulation and testing of turbochargers ensured positive results for confirmation of the system. Parameters like low speed torque, smoke and compressor efficiency were evaluated and analysed for all configurations. The safe limits of surge and choke regions of all the compressors were also studied and verified.
Technical Paper

Comparative Studies of Different VGT Designs on Performance and Smoke of CRDe Engine

2018-07-09
2018-28-0074
Diesel engines have occupied a significant position in passenger car applications in the present automotive sector. Turbochargers find a very prominent role in diesel engines of all applications in order to achieve desired power and better fuel economy. Gaining higher torque at lower engine speeds with low smoke levels is a very tough task with fixed geometry turbochargers due to availability of lower air mass resulting in higher smoke emissions. Variable geometry turbochargers are capable of providing better torque at lower speeds and reduced smoke emissions on Common Rail Diesel engines. The Variable Geometry Turbocharger types used in this study are straight profile nozzle vanes (sample A) and curved profile nozzle vanes (sample B). The curved profile vanes as seen in sample B results in reduced variation of circumferential pressure distortions.
Technical Paper

Development of 2.2 L CRDe Engine Meeting BS4 Emission Norms without the Aid of EGR Cooling

2018-07-09
2018-28-0069
The never-ending concern on the air quality and atmospheric pollution has paved way for more stringent emission legislations. Existing Diesel engine hardware face several problems on meeting the tough emission limits and they require more additional features to comply with the emission standards. The current research work throws light on the air path control approach to meet the Bharat stage 4 emission norms on 2.2 L Sports Utility Vehicle engine operating with EGR cooler and the techniques followed to meet the same emission norms without the application of EGR cooler which was successfully implemented on the vehicles enabling reduction of hardware. Also the migration of 2.2 L engine from 88 kW operating on Compression ratio 18.5 to 103 kW at a lower Compression ratio of 16.5 is a challenging process to achieve Nitrogen oxide emissions reduction at part loads.
Technical Paper

Effect of Gear Shift Indicator Technique Enhancing Improved Fuel Economy on SUV

2018-07-09
2018-28-0054
Improving the fuel economy of the vehicle resulting in energy conservation on long run is a challenging task in the automotive field without compromising the emission margins. Fuel economy improvement by effective driving is the main focus of this paper by the proper utilization of gears which can enable good fuel economy even when the vehicle is driven by different drivers. GSI technique was implemented on Sports utility vehicle operating with 2.2 l engine. Tests were carried with GSI and the effect of fuel consumption and emissions were compared to the regular driving cycle. Optimization of various gear shifting points were analyzed and implemented for better fuel economy keeping the drivability in mind, meeting the BS4 emission norms comfortably. The experiments were carried out in both cold and hot conditions to check the effect of GSI and positive results of fuel economy improvement was yielded.
X