Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Cabin Air Quality on Board Mir and the International Space Station - A Comparison

2007-07-09
2007-01-3219
The maintenance of the cabin atmosphere aboard spacecraft is critical not only to its habitability but also to its function. Ideally, air quality can be maintained by striking a proper balance between the generation and removal of contaminants. Both very dynamic processes, the balance between generation and removal can be difficult to maintain and control because the state of the cabin atmosphere is in constant evolution responding to different perturbations. Typically, maintaining a clean cabin environment on board crewed spacecraft and space habitats is a central function of the environmental control and life support (ECLS) system. While active air quality control equipment is deployed on board every vehicle to remove carbon dioxide, water vapor, and trace chemical components from the cabin atmosphere, perturbations associated with logistics, vehicle construction and maintenance, and ECLS system configuration influence the resulting cabin atmospheric quality.
Technical Paper

Strategies to Mitigate Ammonia Release on the International Space Station

2007-07-09
2007-01-3186
The management of off-nominal situations on-board the International Space Station (ISS) is crucial to its continuous operation. Off-nominal situations can arise from virtually any aspect of ISS operations. One situation of particular concern is the inadvertent release of a chemical into the ISS atmosphere. In sufficient quantities, a chemical release can render the ISS uninhabitable regardless of the chemical's toxicity as a result of its effect on the hardware used to maintain the environment. This is certainly true with system chemicals which are integral components to the function and purpose of the system. Safeguards, such as design for minimum risk, multiple containment, hazard assessments, rigorous safety reviews, and others, are in place to minimize the probability of a chemical release to the ISS environment thereby allowing the benefits of system chemicals to outweigh the risks associated with them. The thermal control system is an example of such a system.
Technical Paper

Replacement for Internal Active Thermal Control System Fluid Sample Bag Material

2005-07-11
2005-01-3078
The International Space Station (ISS) Internal Active Thermal Control System (IATCS) uses a water based heat transport fluid with specific chemical parameters and additives for corrosion and microbial control. The fluid and hardware have experienced anomalies since activation of the United States Laboratory (USL), including chemical and possibly, microbial corrosion. The required sampling of the fluid has the crewmembers removing samples via an in-line sampling tool to perform real-time trace ammonia contamination tests using color change strips, and filling a 150 ml bag from each loop for the ground laboratory analyses. The former activity requires stable storage of the strips, and for the latter activity, it is highly desirable to return the ground sample as stable as possible. This paper describes the process for materials selection, test methods/set-up, results, and final recommendation for a replacement outer bag.
Technical Paper

Sabatier Engineering Development Unit

2003-07-07
2003-01-2496
To facilitate life support system loop closure on board the International Space Station (ISS), the Node 3 Oxygen Generation System (OGS) rack contains a functional scar to accommodate a future Carbon dioxide Reduction Assembly (CRA). This CRA uses a Sabatier reactor to produce water from CO2 scrubbed from cabin air and hydrogen byproduct from OGS electrolysis. As part of the effort to better understand and define the functional scar, significant risk mitigation activities have been performed. To address integration risks, a CRA Engineering Development Unit (EDU) has been developed that is functionally equivalent to a flight CRA and is suitable for integrating with ground based carbon dioxide removal and oxygen generation systems. The CRA EDU has been designed to be functionally equivalent to the Sabatier Reactor Subsystem (SRS) portion of the CRA. This paper discusses the CRA design and the major issue expected with the flight unit integration.
Technical Paper

Integrated Orbiter/International Space Station Air Quality Analysis for Post-Mission 2A.1 Risk Mitigation

2000-07-10
2000-01-2250
Crewmember ingress of the International Space Station (ISS) before that time accorded by the original ISS assembly sequence, and thus before the ISS capability to adequately control the levels of temperature, humidity, and carbon dioxide, poses significant impacts to ISS Environmental Control and Life Support (ECLS). Among the most significant considerations necessitated by early ingress are those associated with the capability of the Shuttle Transportation System (STS) Orbiter to control the aforementioned levels, the capability of the ISS to deliver the conditioned air among the ISS elements, and the definition and distribution of crewmember metabolic heat, carbon dioxide, and water vapor. Even under the assumption that all Orbiter and ISS elements would be operating as designed, condensation control and crewmember comfort were paramount issues preceding each of the ISS Missions 2A and 2A.1.
X