Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Rear Seat Occupant Safety: An Investigation of a Progressive Force-Limiting, Pretensioning 3-Point Belt System Using Adult PMHS in Frontal Sled Tests

2009-11-02
2009-22-0002
Rear seat adult occupant protection is receiving increased attention from the automotive safety community. Recent anthropomorphic test device (ATD) studies have suggested that it may be possible to improve kinematics and reduce injuries to rear seat occupants in frontal collisions by incorporating shoulder-belt force-limiting and pretensioning (FL+PT) technologies into rear seat 3-point belt restraints. This study seeks to further investigate the feasibility and potential kinematic benefits of a FL+PT rear seat, 3-point belt restraint system in a series of 48 kmh frontal impact sled tests (20 g, 80 ms sled acceleration pulse) performed with post mortem human surrogates (PMHS). Three PMHS were tested with a 3-point belt restraint with a progressive (two-stage) force limiting and pretensioning retractor in a sled buck representing the rear seat occupant environment of a 2004 mid-sized sedan.
Technical Paper

Restraint Robustness in Frontal Crashes

2007-04-16
2007-01-1181
The protection of a vehicle occupant in a frontal crash is a combination of vehicle front structural design and occupant restraint design. Once chosen and manufactured, these design features must interact with a wide variety of structural characteristics in potential crash partners. If robust, the restraint design will provide a high level of protection for a wide variety of crash conditions. This paper examines how robust a given restraint system is for occupant self-protection and how frontal design can improve the restraint performance of potential crash partners, thus improving their restraint robustness as well. To examine restraint robustness in self protection, the effect of various vehicle deceleration characteristics on occupant injury potential is investigated for a given restraint design. A MADYMO model of a 1996 Taurus interior and its restraint system with a Hybrid III 50th percentile male dummy are simulated and subjected to 650 crash pulses taken during 25 years of U.S.
Technical Paper

Air bag crash investigations

2001-06-04
2001-06-0009
The performance of air bags, as an occupant protection system, is of high interest to the National Highway Traffic Safety Administration (NHTSA or Agency). Since 1972, the NHTSA has operated a Special Crash Investigations (SCI) program which provides in-depth crash investigation data on new and rapidly changing occupant protection technologies in real-world crashes. The Agency uses these in-depth data to evaluate vehicle safety systems and form a basis for rulemaking actions. The data are also used by the automotive industry and other organizations to evaluate the performance of motor vehicle occupant protection systems such as air bags. This paper presents information from NHTSA's SCI program concerning crash investigations on air-bag-equipped vehicles. The paper focus is on data collection and some general findings in air bag crash investigations including: air-bag-related fatal and life-threatening injuries; side air bags; redesigned air bags and advanced air bags.
Technical Paper

Improving Occupant Protection Systems in Frontal Crashes

1996-02-01
960665
In the United States, air bags will be required in all passenger cars and light trucks under Federal Motor Vehicle Safety Standard (FMVSS) No. 208, Occupant Crash Protection. Even after full implementation of driver and passenger air bags as required by FMVSS No. 208, frontal impacts will still account for up to 8,000 fatalities and 120,000 moderate to critical injuries (i.e., injuries of AIS ≥ 2) [1]. The National Highway Traffic Safety Administration (NHTSA) has an ongoing research program to address these fatalities and injuries and provide a basis for the possible future upgrade of FMVSS No. 208. This effort includes developing supplementary test procedures for the evaluation of occupant injury in higher severity crashes, developing improved injury criteria including criteria for assessing injuries to additional body regions, and evaluating the injuries associated with occupant size [2, 3 and 4].
Technical Paper

Strategies for Passenger Car Designs to Improve Occupant Protection in Real World Side Crashes

1993-03-01
930482
The National Highway Traffic Safety Administration (NHTSA) upgraded the side impact protection requirement in Federal Motor Vehicle Safety Standard (FMVSS) No. 214 and added dynamic requirements to reduce the likelihood of thoracic injuries in side crashes. As part of the agency's research in developing the requirements of the standard, NHTSA developed a mathematical model for simulation of side impacts. This paper investigates the overall safety performance, based on Thoracic Trauma Index (TTI) as the criteria for passenger cars in real world side crashes, with the aid of the simulation model. A Thoracic Trauma Index Factor (TTIF) is utilized to compare relative safety performance of passenger cars under various conditions of impact. The concept of relating energy dissipation in various side structure and padding countermeasures is used to develop a family of curves that are representative of a design platform.
Technical Paper

Air Bags for Small Cars

1985-04-01
851200
The National Highway Traffic Safety Administration (NHTSA) has conducted a number of research projects which examined the need and concern for occupants of small cars. These projects include the demonstration of air bags in small cars at crash severities equal to or greater than the 30 mph test required by Federal Motor Vehicle Safety Standards (FMVSS) 208. The results from these projects showing the protective capability of the air bag are reviewed. Factors influencing air bag performance such as amount of vehicle crush and the time available for air bag inflation are examined. Existing technology for providing air bag protection to occupants in small cars is discussed. The issue concerning the safety of out-of-position child passengers is addressed including a number of technical options for dealing with the out-of-position occupant.
Technical Paper

Light Vehicle Frontal Impact Protection

1982-02-01
820243
This paper addresses the protection of occupants in light vehicles. It presents data and techniques for identifying and measuring potential crashworthiness improvements that would mitigate injuries to occupants striking frontal interior components such as the steering wheel, instrument panel and windshield. Both restrained and unrestrained occupants can be injured by frontal interior components in crashes. The focus of this paper is on the unrestrained occupant. However, performance criteria and associated countermeasures will have to be developed considering the differences in the mechanisms of injury to both the restrained and unrestrained occupants. Work on the restrained occupant and the similarities and differences between both conditions remains to be considered. The paper presents information on the magnitude and types of injuries received from frontal interior components and on how the performance of these components and the vehicle structure affect the resultant injuries.
Technical Paper

Light Vehicle Occupant Protection - Top and Rear Structures and Interiors

1982-02-01
820244
This paper addresses serious, occupant crash injuries from: (a) head impacts with A-pillars, roof headers, and roof side rails, and (b) occupant entrapment and roof intrusion in rollover accidents. It also discusses two less frequent causes of injury: (a) fires in crashes, and (b) occupant ejection through the roof and rear window or rear doors. The paper estimates the relative frequencies of these types of injuries, classified according to the body area injured and the vehicle interior component responsible for the injury. Data for these estimates is from the National Crash Severity Study augmented by the 1979 Fatal Accident Reporting System data. Also, this paper addresses the potential for reducing the severity of these injuries in light motor vehicles, with particular emphasis on AIS 3 and more serious injuries.
Technical Paper

Improving Safety Belt Acceptability to the Consumer

1979-02-01
790681
Currently, consumers must contend with many comfort and convenience problems whenever they use a manually operated (“active”) safety belt. Such problems are prevalent not only in older models but in new cars as well. Beginning with 1982 models, most auto manufacturers plan to install automatic safety belts to meet new Federal requirements for passive occupant protection. To reduce the likelihood of consumer rejection and non-use of automatic as well as manual belt systems, research has been conducted to develop performance specifications for improved comfort and convenience. This paper discusses specifications and criteria to improve the safety belts by reducing comfort and convenience variables for both manual and automatic systems.
X