Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Evaluation of DAMAGE Algorithm in Frontal Crashes

2024-04-17
2023-22-0006
With the current trend of including the evaluation of the risk of brain injuries in vehicle crashes due to rotational kinematics of the head, two injury criteria have been introduced since 2013 – BrIC and DAMAGE. BrIC was developed by NHTSA in 2013 and was suggested for inclusion in the US NCAP for frontal and side crashes. DAMAGE has been developed by UVa under the sponsorship of JAMA and JARI and has been accepted tentatively by the EuroNCAP. Although BrIC in US crash testing is known and reported, DAMAGE in tests of the US fleet is relatively unknown. The current paper will report on DAMAGE in NCAP-like tests and potential future frontal crash tests involving substantial rotation about the three axes of occupant heads. Distribution of DAMAGE of three-point belted occupants without airbags will also be discussed. Prediction of brain injury risks from the tests have been compared to the risks in the real world.
Technical Paper

Analysis of Human Driver Behavior in Highway Cut-in Scenarios

2017-03-28
2017-01-1402
The rapid development of driver assistance systems, such as lane-departure warning (LDW) and lane-keeping support (LKS), along with widely publicized reports of automated vehicle testing, have created the expectation for an increasing amount of vehicle automation in the near future. As these systems are being phased in, the coexistence of automated vehicles and human-driven vehicles on roadways will be inevitable and necessary. In order to develop automated vehicles that integrate well with those that are operated in traditional ways, an appropriate understanding of human driver behavior in normal traffic situations would be beneficial. Unlike many research studies that have focused on collision-avoidance maneuvering, this paper analyzes the behavior of human drivers in response to cut-in vehicles moving at similar speeds. Both automated and human-driven vehicles are likely to encounter this scenario in daily highway driving.
Technical Paper

Biomechanical Responses of PMHS Subjected to Abdominal Seatbelt Loading

2016-11-07
2016-22-0004
Past studies have found that a pressure based injury risk function was the best predictor of liver injuries due to blunt impacts. In an effort to expand upon these findings, this study investigated the biomechanical responses of the abdomen of post mortem human surrogates (PMHS) to high-speed seatbelt loading and developed external response targets in conjunction with proposing an abdominal injury criterion. A total of seven unembalmed PMHS, with an average mass and stature of 71 kg and 174 cm respectively were subjected to belt loading using a seatbelt pull mechanism, with the PMHS seated upright in a free-back configuration. A pneumatic piston pulled a seatbelt into the abdomen at the level of the umbilicus with a nominal peak penetration speed of 4.0 m/s. Pressure transducers were placed in the re-pressurized abdominal vasculature, including the inferior vena cava (IVC) and abdominal aorta, to measure internal pressure variation during the event.
Technical Paper

Study of Stick-Slip Friction between Plunging Driveline

2015-06-15
2015-01-2171
Driveline plunge mechanism dynamics has a significant contribution to the driver's perceivable transient NVH error states and to the transmission shift quality. As it accounts for the pitch or roll movements of the front powerplant and rear drive unit, the plunging joints exhibit resisting force in the fore-aft direction under various driveline torque levels. This paper tackles the difficult task of quantifying the coefficient of static friction and the coefficient of dynamic friction in a simple to use metric as it performs in the vehicle. The comparison of the dynamic friction to the static friction allows for the detection of the occurrence of stick-slip in the slip mechanism; which enables for immediate determination of the performance of the design parameters such as spline geometry, mating parts fit and finish, and lubrication. It also provides a simple format to compare a variety of designs available to the automotive design engineer.
Technical Paper

Real-time Determination of Driver's Handling Behavior

2015-04-14
2015-01-0257
This paper proposes an approach to determine driver's driving behavior, style or habit during vehicle handling maneuvers and heavy traction and braking events in real-time. It utilizes intelligence inferred from driver's control inputs, vehicle dynamics states, measured signals, and variables processed inside existing control modules such as those of anti-lock braking, traction control, and electronic stability control systems. The algorithm developed for the proposed approach has been experimentally validated and shows the effectiveness in characterizing driver's handling behavior. Such driver behavior can be used for personalizing vehicle electronic controls, driver assistant and active safety systems, and the other vehicle control features.
Technical Paper

Field-based Assessments of Various AIS2+ Head Risk Curves for Frontal Impact

2015-04-14
2015-01-1437
In the present study, various risk curves for moderate-to-fatal head injury (AIS2+) were theoretically assessed by comparing model-based injury rates with field-based injury rates. This was accomplished by applying the risk curves in corresponding field models. The resulting injury rates were considered from two perspectives: aggregate (0-56 kph events) and point-estimate (higher-speed, barrier-like events). Four risk curves were studied: a HIC15-based curve from Mertz et al. (1997), a BRIC-based curve from Takhounts et al. (2011), a BrIC-based curve from Takhounts et al. (2013) and a Concussion-Correlate-based curve from Rowson et al. (2013). The field modeling pertained to adult drivers in 11-1 o'clock, towaway, full-engagement frontal crashes in the National Automotive Sampling System (NASS, calendar years = 1993-2012), and the model-year range of the passenger vehicles was 1985-2010.
Technical Paper

Injury Distributions of Belted Drivers in Various Types of Frontal Impact

2015-04-14
2015-01-1490
Injury distributions of belted drivers in 1998-2013 model-year light passenger cars/trucks in various types of real-world frontal crashes were studied. The basis of the analysis was field data from the National Automotive Sampling System (NASS). The studied variables were injury severity (n=2), occupant body region (n=8), and crash type (n=8). The two levels of injury were moderate-to-fatal (AIS2+) and serious-to-fatal (AIS3+). The eight body regions ranged from head/face to foot/ankle. The eight crash types were based on a previously-published Frontal Impact Taxonomy (FIT). The results of the study provided insights into the field data. For example, for the AIS2+ upper-body-injured drivers, (a) head and chest injury yield similar contributions, and (b) about 60% of all the upper-body injured drivers were from the combination of the Full-Engagement and Offset crashes.
Journal Article

Driver Lane Change Prediction Using Physiological Measures

2015-04-14
2015-01-1403
Side swipe accidents occur primarily when drivers attempt an improper lane change, drift out of lane, or the vehicle loses lateral traction. Past studies of lane change detection have relied on vehicular data, such as steering angle, velocity, and acceleration. In this paper, we use three physiological signals from the driver to detect lane changes before the event actually occurs. These are the electrocardiogram (ECG), galvanic skin response (GSR), and respiration rate (RR) and were determined, in prior studies, to best reflect a driver's response to the driving environment. A novel system is proposed which uses a Granger causality test for feature selection and a neural network for classification. Test results showed that for 30 lane change events and 60 non lane change events in on-the-road driving, a true positive rate of 70% and a false positive rate of 10% was obtained.
Journal Article

A Copula-Based Approach for Model Bias Characterization

2014-04-01
2014-01-0735
Available methodologies for model bias identification are mainly regression-based approaches, such as Gaussian process, Bayesian inference-based models and so on. Accuracy and efficiency of these methodologies may degrade for characterizing the model bias when more system inputs are considered in the prediction model due to the curse of dimensionality for regression-based approaches. This paper proposes a copula-based approach for model bias identification without suffering the curse of dimensionality. The main idea is to build general statistical relationships between the model bias and the model prediction including all system inputs using copulas so that possible model bias distributions can be effectively identified at any new design configurations of the system. Two engineering case studies whose dimensionalities range from medium to high will be employed to demonstrate the effectiveness of the copula-based approach.
Journal Article

Modeling of Adaptive Energy Absorbing Steering Columns for Dynamic Impact Simulations

2014-04-01
2014-01-0802
The objective of this paper focused on the modeling of an adaptive energy absorbing steering column which is the first phase of a study to develop a modeling methodology for an advanced steering wheel and column assembly. Early steering column designs often consisted of a simple long steel rod connecting the steering wheel to the steering gear box. In frontal collisions, a single-piece design steering column would often be displaced toward the driver as a result of front-end crush. Over time, engineers recognized the need to reduce the chance that a steering column would be displaced toward the driver in a frontal crash. As a result, collapsible, detachable, and other energy absorbing steering columns emerged as safer steering column designs. The safety-enhanced construction of the steering columns, whether collapsible, detachable, or other types, absorb rather than transfer frontal impact energy.
Journal Article

Modeling of an Advanced Steering Wheel and Column Assembly for Frontal and Side Impact Simulations

2014-04-01
2014-01-0803
This paper presents the final phase of a study to develop the modeling methodology for an advanced steering assembly with a safety-enhanced steering wheel and an adaptive energy absorbing steering column. For passenger cars built before the 1960s, the steering column was designed to control vehicle direction with a simple rigid rod. In severe frontal crashes, this type of design would often be displaced rearward toward the driver due to front-end crush of the vehicle. Consequently, collapsible, detachable, and other energy absorbing steering columns emerged to address this type of kinematics. These safety-enhanced steering columns allow frontal impact energy to be absorbed by collapsing or breaking the steering columns, thus reducing the potential for rearward column movement in severe crashes. Recently, more advanced steering column designs have been developed that can adapt to different crash conditions including crash severity, occupant mass/size, seat position, and seatbelt usage.
Technical Paper

Clustering and Scaling of Naturalistic Forward Collision Warning Events Based on Expert Judgments

2014-04-01
2014-01-0160
The objectives of this study were a) to determine how expert judges categorized valid Integrated Vehicle-Based Safety Systems (IVBSS) Forward Collision Warning (FCW) events from review of naturalistic driving data; and b) to determine how consistent these categorizations were across the judges working in pairs. FCW event data were gathered from 108 drivers who drove instrumented vehicles for 6 weeks each. The data included video of the driver and road scene ahead, beside, and behind the vehicle; audio of the FCW alert onset; and engineering data such as speed and braking applications. Six automotive safety experts examined 197 ‘valid’ (i.e., conditions met design intent) FCW events and categorized each according to a taxonomy of primary contributing factors. Results indicated that of these valid FCW events, between 55% and 73% could be considered ‘nuisance alerts’ by the driver.
Journal Article

Thermophysical Properties Measurement of Interior Car Materials vs. Temperature and Mechanical Compression

2014-04-01
2014-01-1024
Thermophysical properties of materials used in the design of automotive interiors are needed for computer simulation of climate conditions inside the vehicle. These properties are required for assessment of the vehicle occupants' thermal sensation as they come in contact with the vehicle interior components, such as steering wheels, arm rests, instruments panel and seats. This paper presents the results of an investigation into the thermophysical properties of materials which are required for solving the non-linear Fourier equations with any boundary conditions and taking into account materials' specific heat, volume density, thermal conductivity, and thermal optical properties (spectral and total emissivity and absorptivity). The model and results of the computer simulation will be published in a separate paper.
Technical Paper

Model Predictive Control of DOC Temperature during DPF Regeneration

2014-04-01
2014-01-1165
This paper presents the application of model predictive control (MPC) to DOC temperature control during DPF regeneration. The model predictive control approach is selected for its advantage - using a model to optimize control moves over horizon while handling constraints. Due to the slow thermal dynamics of the DOC and DPF, computational bandwidth is not an issue, allowing for more complex calculations in each control loop. The control problem is formulated such that all the engine control actions, other than far post injection, are performed by the existing production engine controller, whereas far post injection is selected as the MPC manipulated variable and DOC outlet temperature as the controlled variable. The Honeywell OnRAMP Design Suite (model predictive control software) is used for model identification, control design and calibration.
Technical Paper

Design of a Fuzzy Based AFS (Advanced Front Lightning System) to Improve Night-Time Driving for Truck Drivers: Foreseeing its Use in Emerging Markets

2014-04-01
2014-01-0435
Nighttime driving behavior differs from that during the day because of unique scenarios presented in a driver's field of vision. At night drivers have to rely on their vehicle headlamps to illuminate the road to be able to see the environment and road conditions in front of him. In recent decades car illumination systems have undergone considerable technological advances such as the use of a Light Emitting Diode (LED) in Adaptive Front-lighting Systems (AFS), a breakthrough in lighting technology. This is rapidly becoming one of the most important innovative technologies around the world within the lighting community. This paper discusses driver's needs given the environment and road conditions using a survey applied to compare the needs of both truck and car drivers under different road conditions. The results show the potential and suitability of the methodology proposed for controlling truck-related lighting in any emergent market.
Technical Paper

Investigation of Climate Control Power Consumption in DTE Estimation for Electric Vehicles

2014-04-01
2014-01-0713
Distance to empty (DTE) estimation is an important factor to electric vehicle (EV) applications due to its limited driving range. The DTE calculation is based on available energy of the battery and power usage by the powertrain components (e.g. electric motor) and climate control components (e.g. PTC heater and electric AC compressor). The conventional way of estimating the DTE is to treat the power consumed by the climate control system the same as the power by the powertrain for either instantaneous or rolling average estimation. The analysis in this study shows that the power consumption by the climate control system should be estimated based on the current ambient conditions and driver's input instead of using the recorded data from the past driving cycles. The climate control should also be considered separately from the powertrain in power usage rolling average calculation, which results in improvements in DTE estimation especially for extreme hot and cold conditions.
Journal Article

In-Vehicle Driver State Detection Using TIP-II

2014-04-01
2014-01-0444
A transportable instrumentation package to collect driver, vehicle and environmental data is described. This system is an improvement on an earlier system and is called TIP-II [13]. Two new modules were designed and added to the original system: a new and improved physiological signal module (PH-M) replaced the original physiological signals module in TIP, and a new hand pressure on steering wheel module (HP-M) was added. This paper reports on exploratory tests with TIP-II. Driving data were collected from ten driver participants. Correlations between On-Board-Diagnostics (OBD), video data, physiological data and specific driver behavior such as lane departure and car following were investigated. Initial analysis suggested that hand pressure, skin conductance level, and respiration rate were key indicators of lane departure lateral displacement and velocity, immediately preceding lane departure; heart rate and inter-beat interval were affected during lane changes.
Technical Paper

Development of Brain Injury Criteria (BrIC)

2013-11-11
2013-22-0010
Rotational motion of the head as a mechanism for brain injury was proposed back in the 1940s. Since then a multitude of research studies by various institutions were conducted to confirm/reject this hypothesis. Most of the studies were conducted on animals and concluded that rotational kinematics experienced by the animal's head may cause axonal deformations large enough to induce their functional deficit. Other studies utilized physical and mathematical models of human and animal heads to derive brain injury criteria based on deformation/pressure histories computed from their models.
Journal Article

High-Frequency Time Domain Source Path Contribution: From Engine Test Bench Data to Cabin Interior Sounds

2013-05-13
2013-01-1957
This work presents an application of airborne source path contribution analysis with emphasis on prediction of wideband sounds inside a cabin from measurements made around a stand-alone engine. The heart of the method is a time domain source path receiver technique wherein the engine surface is modeled as a number of source points. Nearfield microphone measurements and transfer functions are used to quantify the source strengths at these points. This acoustic engine model is then used in combination with source-to-receiver transfer functions to calculate sound levels at other positions, such as at the driver's ear position. When combining all the data, the in-cabin engine sound can be synthesized even before the engine is physically installed into the vehicle. The method has been validated using a powertrain structure artificially excited by several shakers playing band-limited noise so as to produce a complicated vibration pattern on the surface.
Journal Article

Side Crash Pressure Sensor Prediction for Unitized Vehicles: An ALE Approach

2013-04-08
2013-01-0657
With a goal to help develop pressure sensor calibration and deployment algorithms using computer simulations, an Arbitrary Lagrangian Eulerian (ALE) approach was adopted in this research to predict the responses of side crash pressure sensors for unitized vehicles. For occupant protection, acceleration-based crash sensors have been used in the automotive industry to deploy restraint devices when vehicle crashes occur. With improvements in the crash sensor technology, pressure sensors that detect pressure changes in door cavities have been developed recently for vehicle crash safety applications. Instead of using acceleration (or deceleration) in the acceleration-based crash sensors, the pressure sensors utilize pressure change in a door structure to determine the deployment of restraint devices. The crash pulses recorded by the acceleration-based crash sensors usually exhibit high frequency and noisy responses.
X