Refine Your Search

Topic

Author

Search Results

Technical Paper

Thermal Management System Test Bench for Electric Vehicle Technology

2024-04-09
2024-01-2407
The importance of designing and sizing a thermal management system for electric vehicle powertrains cannot be overstated. Traditional approaches often rely on model-based system design using supplier reference component data, which can inadvertently lead to undisclosed errors arising from the interactions between the components and the environment. This paper introduces a novel test facility for battery electric vehicle thermal management technology, which has been designed for neural network virtual sensor and non-linear multi-in multi-out control development. The paper demonstrates how a digital twin of the test bench can used to support the development of such technology. Additionally, this paper presents preliminary results from the test bench revealing insights into the performance and interactions of key components. For instance, there is an observed 30% reduction in the maximum flow rate of the pump integrated into the test bench compared to the specified value.
Technical Paper

Virtual Evaluation of PM Rotor Failure Modes and Magnet Adhesive Debonding with Cohesive Interface Approach

2024-04-09
2024-01-2725
The modern luxurious electric vehicle (EV) demands high torque and high-speed requirements with increased range. Fulfilling these requirements gives rise to the need for increased efficiency and power density of the motors in the Electric Drive Unit (EDU). Internal Permanent Magnet (IPM) motor is one of the best suited options in such scenarios because of its primary advantages of higher efficiency and precise control over torque and speed. In the IPM motor, permanent magnets are mounted within the rotor body to produce a resultant rotating magnetic field with the 3-phase AC current supply in the stator. IPM configuration provides structural integrity and high dynamic performance as the magnets are inserted within the rotor body. Adhesive glue is used to install the magnets within the laminated stack of rotor.
Technical Paper

Material Modelling of Lamination Stack in Electric Machines

2024-04-09
2024-01-2745
The rotor and stator of electric motors consist of multiple materials, of which steel forms the majority of mass and volume. Steel in electric motors is commonly in the form of thin sheets (laminations), stacked along the axis of the rotor. The structural integrity of such a stack can be ensured using bolting, welding or bonding of the laminations. Predictive mechanical finite element simulations of these laminated stacks can become computationally intense because the steel sheets are thin, and the motor often contains hundreds of them. If the laminations are modelled individually, the size of the elements is very small compared to the overall dimensions and the interface between the laminations need to be modelled as well. In this paper, we present an alternate method of modelling this laminated stack as a single solid body using homogeneous and orthotropic material property, instead of representing each lamination.
Technical Paper

Particulate Contamination in Biodiesel Fuel under Long-Term Storage

2020-09-15
2020-01-2143
Many incidents associated with filter plugging have extensively been reported in microbially contaminated diesel and biodiesel fuel systems, especially under long term storage conditions. In this study a quantitative assessment of the undesirable insoluble solids produced in contaminated biodiesel fuels was carried out in order to evaluate their evolution rate during biodeterioration. For this purpose, a series of contaminated biodiesel fuel microcosms were prepared and stored for six months under stable conditions. The quantity of the particulate contaminants was monitored during storage by a multiple filtration technique which was followed at the end by a comparison with the active bioburden per ATP bioluminescence protocol. Additionally, identical microcosms were treated with a commercially available biocide in order to examine the latter’s activity both on solids formation and the microbial proliferation.
Journal Article

Investigation of Wave Stripping Models on a Generic Wing-Mirror Using a Coupled Level-Set Volume of Fluid Simulation

2020-04-14
2020-01-0682
Predicting Exterior Water Management is important for developing vehicles that meet customer expectations in adverse weather. Fluid film methods, with Lagrangian tracking, can provide spray and surface water simulations for complex vehicle geometries in on-road conditions. To cope with this complexity and provide practical engineering simulations, such methods rely on empirical sub-models to predict phenomena such as the film stripping from the surface. Experimental data to develop and validate such models is difficult to obtain therefore here a high-fidelity Coupled Level-set Volume of Fluid (CLSVOF) simulation is carried out. CLSVOF resolves the interface of the liquid in three dimensions; allowing direct simulation of film behaviour and interaction with the surrounding air. This is used to simulate a simplified wing-mirror, with air flow, on which water is introduced.
Technical Paper

Diesel Fuel Improvers and Their Effect on Microbial Stability of Diesel/Biodiesel Blends

2018-09-10
2018-01-1751
Additives that enhance properties, such as cetane number or cold flow, are introduced in diesel-biodiesel blends in order to upgrade its performance as well as to aid its handling and distribution. Furthermore, in order to protect the engine and fuel operating system equipment, diesel fuel may be treated with corrosion inhibitors and detergents. However, additives could also have an impact on other parameters beyond those that they are intended to boost. In the present study the effect of diesel fuel improvers on fuel’s microbial stability is examined. An additive-free ultra low sulfur diesel (ULSD) was blended with Soybean Fatty Acid Methyl Esters (FAME) and the resulting blend was treated separately with a series of commercially available diesel fuel additives.
Technical Paper

Measurement of Soot Concentration in a Prototype Multi-Hole Diesel Injector by High-Speed Color Diffused Back Illumination Technique

2017-10-08
2017-01-2255
A prototype multi-hole diesel injector operating with n-heptane fuel from a high-pressure common rail system is used in a high-pressure and high-temperature test rig capable of reaching 1100 Kelvin and 150 bar under different oxygen concentrations. A novel optical set-up capable of visualizing the soot cloud evolution in the fuel jet from 30 to 85 millimeters from the nozzle exit with the high-speed color diffused back illumination technique is used as a result of the insertion of a high-pressure window in the injector holder opposite to the frontal window of the vessel. The experiments performed in this work used one wavelength provide information about physical of the soot properties, experimental results variating the operational conditions show the reduction of soot formation with an increase in injection pressure, a reduction in ambient temperature, a reduction in oxygen concentration or a reduction in ambient density.
Technical Paper

Evaluation of the Stability and Ignition Quality of Diesel-Biodiesel-Butanol Blends

2017-10-08
2017-01-2320
FAME is the most common renewable component of conventional automotive diesel. Despite the advantages, biodiesel is more susceptible to oxidative deterioration and due to its chemical composition as well as its higher affinity to water, is considered to be a favorable substrate for microorganisms. On the other hand, apart from biodiesel, alcohols are considered to be promising substitutes to conventional diesel fuel because they can offer higher oxygen concentration leading to better combustion characteristics and lower exhaust emissions. More specifically, n-butanol is a renewable alcohol demonstrating better blending capabilities and properties when it is added to diesel fuel, as its composition is closer to conventional fuel, when compared ethanol to for example. Taking into consideration the alleged disinfectant properties of alcohols, it would be interesting to examine also the microbial stability of blends containing n-butanol in various concentrations.
Journal Article

Off-Road Tire-Terrain Interaction: An Analytical Solution

2016-09-27
2016-01-8029
A novel semi-analytical solution has been developed for the calculation of the static and dynamic response of an off road tire interacting with a deformable terrain, which utilizes soil parameters independent of the size of the contact patch (size-independent). The models involved in the solution presented, can be categorized in rigid and/or pneumatic tires, with or without tread pattern. After a concise literature review of related methods, a detailed presentation of the semi-analytical solution is presented, along with assumptions and limitations. A flowchart is provided, showing the main steps of the numerical implementation, and various test cases have been examined, characterized in terms of vertical load, tire dimensions, soil properties, deformability of the tire, and tread pattern. It has been found that the proposed model can qualitatively capture the response of a rolling wheel on deformable terrain.
Technical Paper

Robust Application of CBE and OBE for Engine Testing System Diagnosis

2016-04-05
2016-01-0987
Tightening emissions regulations are driving increasing focus on both equipment and measurement capabilities in the test cell environment. Customer expectations are therefore rising with respect to data uncertainty. Key critical test cell parameters such as load, fuel rate, air flow and emission measurements are more heavily under scrutiny and require real time methods of verification over and above the traditional test cell calibration in 40CFR1065 regulation. The objective of this paper is to develop a system to use a carbon dioxide (CO2) based balance error and an oxygen (O2) based balance error for diagnosing the main measurement system error in the test cell such as fuel rate meter, air flow meter, emission sample line, pressure transducer and thermocouples. The general combustion equation is used to set up the balance equations with assumptions. To validate the air fuel ratio balance model an experimental investigation was carried out for D2 5 mode and C1 8 mode cycle test.
Technical Paper

Experimental and Computational Study of Vehicle Surface Contamination on a Generic Bluff Body

2016-04-05
2016-01-1604
This paper focuses on methods used to model vehicle surface contamination arising as a result of rear wake aerodynamics. Besides being unsightly, contamination, such as self-soiling from rear tyre spray, can degrade the performance of lighting, rear view cameras and obstruct visibility through windows. In order to accurately predict likely contamination patterns, it is necessary to consider the aerodynamics and multiphase spray processes together. This paper presents an experimental and numerical (CFD) investigation of the phenomenon. The experimental study investigates contamination with controlled conditions in a wind tunnel using a generic bluff body (the Windsor model.) Contamination is represented by a water spray located beneath the rear of the vehicle.
Technical Paper

Oxidation Stability Study of Biobased Lubricant Basestocks

2015-09-01
2015-01-2046
One of the concerns for biolubricants is the improvement of their oxidation resistance. In this paper the oxidative behavior of seven different types of biobased lubricants basestocks is examined. The aim was to study their relative oxidation stability and also to investigate their response to various antioxidants. The renewable lubricants were treated with four antioxidant additives at a concentration of 0.5% wt. and a comparative assessments of the latters' effectiveness in suppressing the oxidation rate was carried out. Alterations in the acid value were examined as well as relative changes of the oxidized samples by FTIR spectroscopy. The oxidation stability was assessed by employing a Rapid Small Scale Oxidation Test (RSSOT) apparatus according to the accelerated oxidation stability standard method ASTM D7545/EN16091. RSSOT is a relatively new method and thus the behaviour of biobased lubricants and antioxidant agents in this accelerated method has not been thoroughly examined.
Journal Article

Assessment of Broadband Noise Generated by a Vehicle Sunroof at Different Flow Conditions using a Digital Wind Tunnel

2015-06-15
2015-01-2321
For the automotive industry, the quality and level of the wind noise contribution has a growing importance and therefore should be addressed as early as possible in the development process. Each component of the vehicle is designed to meet its individual noise target to ensure the wind noise passenger comfort level inside the vehicle is met. Sunroof broadband noise is generated by the turbulent flow developed over the roof opening. A strong shear layer and vortices impacting on the trailing edge of the sunroof are typical mechanisms related to the noise production. Sunroof designs are tested to meet broadband noise targets. Experimentally testing designs and making changes to meet these design targets typically involves high cost prototypes, expensive wind tunnel sessions and potentially late design changes.
Journal Article

Analytical and Developmental Techniques Utilized in the Structural Optimization of a New Lightweight Diesel Engine

2015-06-15
2015-01-2298
Jaguar Land Rover (JLR) has designed and developed a new inline 4 cylinder engine family, branded Ingenium. In addition to delivering improved emissions and fuel economy over the outgoing engine, another key aim from the outset of the program was to reduce the combustion noise. This paper details the NVH development of the lead engine in this family, a 2.0 liter common rail turbo diesel. The task from the outset of this new program was to reduce the mass of the engine by 21.5 kg, whilst also improving the structural attenuation of the engine by 5 dB in comparison to the outgoing engine. Improving the structural attenuation by 5 dB was not only a key enabler in reducing combustion noise, but also helped to achieve a certified CO2 performance of 99 g/km in the all-new Jaguar XE model, by allowing more scope for increasing cylinder pressure forcing without compromising NVH.
Journal Article

A Computational Approach to Assess Buffeting and Broadband Noise Generated by a Vehicle Sunroof

2015-04-14
2015-01-1532
Car manufacturers put large efforts into reducing wind noise to improve the comfort level of their cars. Each component of the vehicle is designed to meet its individual noise target to ensure the wind noise passenger comfort level inside the vehicle is met. Sunroof designs are tested to meet low-frequency buffeting (also known as boom) targets and broadband noise targets for the fully open sunroof with deflector and for the sunroof in vent position. Experimentally testing designs and making changes to meet these design targets typically involves high cost prototypes, expensive wind tunnel sessions, and potentially late design changes. To reduce the associated costs as well as development times, there is strong motivation for the use of a reliable numerical prediction capability early in the vehicle design process.
Technical Paper

The Use of Intumescent Coatings with Polymer Composites for High Temperature Automotive Applications

2015-04-14
2015-01-0713
To meet corporate CO2 emission targets polymer composites are being explored for light-weighting vehicle applications. Operational requirements may demand that such materials function above glass transition temperatures or heat deflection points. Intumescent coatings are traditionally used in construction to protect steelwork during fire. This paper presents a novel experimental investigation of two intumescent technologies to thermally protect a reinforced polyamide, for use as a semi-structural vehicle component. Coatings were assessed against the thermal requirement to withstand 500°C for 10 minutes. The differences in performance observed between water and epoxy based coatings as well as when an insulation layer was introduced are reported. Ultimate Tensile Stress (UTS) and modulus values were obtained at −40°C, ambient, and 85°C for uncoated specimens before and after thermal cycling.
Technical Paper

Adding Depth: Establishing 3D Display Fundamentals for Automotive Applications

2015-04-14
2015-01-0147
The advent of 3D displays offers Human-Machine Interface (HMI) designers and engineers new opportunities to shape the user's experience of information within the vehicle. However, the application of 3D displays to the in-vehicle environment introduces a number of new parameters that must be carefully considered in order to optimise the user experience. In addition, there is potential for 3D displays to increase driver inattention, either through diverting the driver's attention away from the road or by increasing the time taken to assimilate information. Manufacturers must therefore take great care in establishing the ‘do’s and ‘don’t's of 3D interface design for the automotive context, providing a sound basis upon which HMI designers can innovate. This paper describes the approach and findings of a three-part investigation into the use of 3D displays in the instrument cluster of a road car, the overall aim of which was to define the boundaries of the 3D HMI design space.
Technical Paper

Optimization of Kinetic Parameters for an Aftertreatment Catalyst

2014-10-13
2014-01-2814
Mathematical modelling has become an essential tool in the design of modern catalytic systems. Emissions legislation is becoming increasingly stringent, and so mathematical models of aftertreatment systems must become more accurate in order to provide confidence that a catalyst will convert pollutants over the required range of conditions. Automotive catalytic converter models contain several sub-models that represent processes such as mass and heat transfer, and the rates at which the reactions proceed on the surface of the precious metal. Of these sub-models, the prediction of the surface reaction rates is by far the most challenging due to the complexity of the reaction system and the large number of gas species involved.
Technical Paper

Assessment of the Oxidation Stability of Biodiesel Fuel using the Rancimat and the RSSOT methods

2014-10-13
2014-01-2758
For many years Rancimat was the only standardized method for measuring the oxidation stability of FAME and FAME/diesel blends. However this method is not applicable to pure conventional petroleum products and so the effect of FAME on diesel fuel stability could not be evaluated directly. Recently a Rapid Small Scale Oxidation Test (RSSOT) that covers the determination of the stability of biofuels and petroleum products was developed and standardized. In this study the oxidation stability of seven different types of FAMEs was assessed, either neat or blended with three types of ULSD fuel, by employing both the Rancimat and the RSSOT accelerated oxidation methods. The determinations from either test were analyzed and a comparative assessment of these two method was carried out.
Journal Article

Cyclic Stress-Strain Behaviour of AM60B and AE44 Cast Magnesium Alloys and Its Impact on LCF Characterisation and Fatigue Analysis

2014-04-01
2014-01-0969
Light weight alloys are widely used in the automotive industry in order to meet environmental requirements. Cast magnesium alloys are candidate materials due to their high strength to weight ratio, high stiffness and excellent castability. However, some previously reported anomalous cyclic stress-strain behaviours of magnesium alloys have not been fully investigated especially in LCF characterisation. The main objective of this work was to investigate the cyclic loading-unloading behaviour of high pressure die cast (HPDC) AM60B and AE44 magnesium alloys under uniaxial tension or/and compression and its effect on LCF behaviour. It was found that classical linear stress-strain behaviour, for both AM60B and AE44 alloys, applied only to a very small range of stress beyond which significant pseudo-elastic behaviour was discovered. This affected LCF characterisation and subsequent fatigue analysis processes.
X