Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Hardware-in-the-Loop Power Extraction Using Different Real-Time Platforms

2008-11-11
2008-01-2909
Aircraft power demands continue to increase with the increase in electrical subsystems. These subsystems directly affect the behavior of the power and propulsion systems and can no longer be neglected or assumed linear in system analyses. The complex models designed to integrate new capabilities have a high computational cost. Hardware-in-the-loop (HIL) is being used to investigate aircraft power systems by using a combination of hardware and simulations. This paper considers three different real-time simulators in the same HIL configuration. A representative electrical power system is removed from a turbine engine simulation and is replaced with the appropriate hardware attached to a 350 horsepower drive stand. Variables are passed between the hardware and the simulation in real-time to update model parameters and to synchronize the hardware with the model.
Technical Paper

Integrated Hardware-in-the-Loop Simulation of a Complex Turbine Engine and Power System

2006-11-07
2006-01-3035
The interdependency between propulsion, power, and thermal subsystems on military aircraft such as the F-35 Joint Strike Fighter (JSF) and F-22 Raptor continues to increase as advanced war-fighting capabilities including solid-state radars, electronic attack, electric actuation, and Directed Energy Weaponry (DEW) expand to meet Air Force needs. Novel analysis and testing methodologies are required to predict these interdependencies and address adverse interactions prior to costly hardware prototyping. As a result, the Air Force Research Laboratory (AFRL) has established a dynamic hardware-in-the-loop (HIL) test-bed wherein transient simulations can be integrated through advanced real-time simulation with prototype hardware for integrated system studies and analysis. This paper details a test-bed configuration where a dynamic simulation of an aircraft turbine engine is utilized to control a dual-head electric drive stand.
X