Refine Your Search

Topic

Author

Search Results

Technical Paper

Towards Establishing Continuous-X Pipeline Using Modular Software-in-the-Loop Test Environments

2021-09-22
2021-26-0412
Software-in-the-Loop (SiL) test environments are the ideal virtual platforms for enabling continuous-development, -integration, -testing -delivery or -deployment commonly referred as Continuous-X (CX) of the complex functionalities in the current automotive industry. This trend especially is contributed by several factors such as the industry wide standardization of the model exchange formats, interfaces as well as architecture definitions. The approach of frontloading software testing with SiL test environments is predominantly advocated as well as already adopted by various Automotive OEMs, thereby the demand for innovating applicable methods is increasing. However, prominent usage of the existing monolithic architecture for interaction of various elements in the SiL environment, without regarding the separation between functional and non-functional test scope, is reducing the usability and thus limiting significantly the cost saving potential of CX with SiL.
Technical Paper

Multi Domain Modeling of NVH for Electro-Mechanical Drives

2020-09-30
2020-01-1584
Acoustics and vibrations are amongst the foremost indicators in perceiving the quality of drive units. Analyzing these factors is vital for improve the performances of electro-mechanical systems. This paper deals with the study of vibro-acoustic behavior concerning the drivetrain components using system modeling and Finite Element calculations. A generic simulation methodology within system modeling is proposed enabling the vibro-acoustic simulation of electro-mechanical drivetrains. Excitations for these systems mostly arise from the electric motor and mechanical gears. The paper initially depicts the system model for gear whining considering the associated nonlinearities of the mesh. The results obtained from the gear mesh submodel, together with the excitations resulting from the motor, aid in the comprehension of the forces at the bearings and of the vibrations at the housings.
Technical Paper

Analyze This! Sound Static Analysis for Integration Verification of Large-Scale Automotive Software

2019-04-02
2019-01-1246
Safety-critical embedded software has to satisfy stringent quality requirements. One such requirement, imposed by all contemporary safety standards, is that no critical run-time errors must occur. Runtime errors can be caused by undefined or unspecified behavior of the programming language; examples are buffer overflows or data races. They may cause erroneous or erratic behavior, induce system failures, and constitute security vulnerabilities. A sound static analyzer reports all such defects in the code, or proves their absence. Sound static program analysis is a verification technique recommended by ISO/FDIS 26262 for software unit verification and for the verification of software integration. In this article we propose an analysis methodology that has been implemented with the static analyzer Astrée. It supports quick turn-around times and gives highly precise whole-program results.
Technical Paper

Comparison of Shadowgraph Imaging, Laser-Doppler Anemometry and X-Ray Imaging for the Analysis of Near Nozzle Velocities of GDI Fuel Injectors

2017-10-08
2017-01-2302
The fuel spray behavior in the near nozzle region of a gasoline injector is challenging to predict due to existing pressure gradients and turbulences of the internal flow and in-nozzle cavitation. Therefore, statistical parameters for spray characterization through experiments must be considered. The characterization of spray velocity fields in the near-nozzle region is of particular importance as the velocity information is crucial in understanding the hydrodynamic processes which take place further downstream during fuel atomization and mixture formation. This knowledge is needed in order to optimize injector nozzles for future requirements. In this study, the results of three experimental approaches for determination of spray velocity in the near-nozzle region are presented. Two different injector nozzle types were measured through high-speed shadowgraph imaging, Laser Doppler Anemometry (LDA) and X-ray imaging.
Technical Paper

FMI for Physics-Based Models on AUTOSAR Platforms

2017-01-10
2017-26-0358
As automobiles become increasingly smarter, the need to understand within the automotive software the physical behavior of its parts is growing as well. The laws of physics governing such behavior are mostly formulated as differential equations, which today are usually created or obtained from various modeling tools. For solving them, the tools offer several solvers to satisfy the requirements of different problems. E.g. simple and fast explicit low order solvers for non-stiff problems and more complex implicit solvers for stiff problems. Though the modeling and code generation features as available in such tools are desirable for embedded automotive software, they cannot be used directly due to special restrictions with respect to hard realtime constraints. One such restriction is the organization of automotive software in components complying with the AUTOSAR standard which is not widely supported by the modeling tools.
Journal Article

Side View Assist - The World’s First Rider Assistance System for Two-Wheelers

2016-11-08
2016-32-0052
The Side View Assist is the World’s first rider assistance system for two-wheelers. This is a Blind Spot Warning system, which uses four ultrasonic sensors to monitor the surrounding of the rider. Whenever there is a vehicle (i.e. a car, truck, or another motorbike) in the rider’s blind spot, the technology warns the rider with an optical signal close to the mirror. This will allow the rider to avoid a collision when changing lanes. In the current vehicle application, Side View Assist is active at speeds ranging from 25 to 80 kilometers per hour and supports riders whenever the difference in relative speed to other road users is small. The system helps to improve safety especially in cities, where heavy traffic makes it necessary to change lanes more often. Originally such systems have been developed for cars and different system solutions for cars have been in serial production for several years. The challenge was to adapt these systems so they would work for two-wheelers as well.
Technical Paper

Flex Fuel Software Maintainability Improvement: A Case Study

2016-10-25
2016-36-0214
Many software functions currently available in the engine control units have been developed for several years (decades in some cases), reengineered or adapted due to new requirements, what may add to their inherent complexity an unnecessary complication. This paper deals with the study and implementation of a software reengineering strategy for the embedded domain, which is in transfer from research department to product development, here applied to improve maintainability of flex fuel functions. The strategy uses the SCODE “Essential Analysis”, an approach for the embedded system domain. The method allows to reduce the system complexity to the unavoidable inherent problem complexity, by decomposing the system into smaller sub problems based on its essential physics. A case study was carried out to redesign a function of fuel adaptation. The analysis was performed with the support of a tool, which covers all the phases of the method.
Technical Paper

On the Evaluation Methods for Systematic Further Development of Direct-Injection Nozzles

2016-10-17
2016-01-2200
To satisfy future emission classes, e.g. EU6c, the particulate number (PN) of Direct-Injection Spark-Ignition (DISI) engines must be reduced. For these engines, different components influence the combustion process and thus also the formation of soot particles and deposits. Along with other engine components, the injector nozzle influences the particulate number and deposits in both fuel spray behavior and nozzle “tip wetting”. In case of non-optimized nozzle layouts, fuel may impinge on the piston and the liner in an unfavorable way, which implies low-oxygen diffusive combustion by retarded vaporizing wall films. For the tip wetting, wall films are present on the actual surface of the nozzle tip, which is also caused by unadapted nozzles. For non-optimized nozzles, the latter effect can become quite dominant. This paper deals with systematic nozzle development activities towards low-deposit nozzle tips and thus decreasing PN values.
Technical Paper

Numerical and Experimental Studies on Mixture Formation with an Outward-Opening Nozzle in a SI Engine with CNG-DI

2016-04-05
2016-01-0801
CNG direct injection is a promising technology to promote the acceptance of natural gas engines. Among the beneficial properties of CNG, like reduced pollutants and CO2 emissions, the direct injection contributes to a higher volumetric efficiency and thus to a better driveability, one of the most limiting drawbacks of today’s CNG vehicles. But such a combustion concept increases the demands on the injection system and mixture formation. Among other things it requires a much higher flow rate at low injection pressure. This can be only provided by an outward-opening nozzle due to its large cross-section. Nevertheless its hollow cone jet with a specific propagation behavior leads to an adverse fuel-air distribution especially at higher loads under scavenging conditions. This paper covers numerical and experimental analysis of CNG direct injection to understand its mixture formation.
Technical Paper

Desktop Simulation and Calibration of Diesel Engine ECU Software using Software-in-the-Loop Methodology

2014-04-01
2014-01-0189
Current exhaust gas emission regulations can only be well adhered to through optimal interplay of combustion engine and exhaust gas after-treatment systems. Combining a modern diesel engine with several exhaust gas after-treatment components (DPF, catalytic converters) leads to extremely complex drive systems, with very complex and technically demanding control systems. Current engine ECUs (Electronic Control Unit) have hundreds of functions with thousands of parameters that can be adapted to keep the exhaust gas emissions within the given limits. Each of these functions has to be calibrated and tested in accordance with the rest of the ECU software. To date this task has been performed mostly on engine test benches or in Hardware-in-the-Loop (HiL) setups. In this paper, a Software-in-the-Loop (SiL) approach, consisting of an engine model and an exhaust gas treatment (EGT) model, coupled with software from a real diesel engine ECU, will be described in detail.
Journal Article

PSI5 in Powertrain

2012-04-16
2012-01-0938
Among the currently available sensor interfaces for automotive applications, only the PSI5 interface - as standardized in the new 2001 PSI5 V2.0 - meets the rising system requirements, the increased requirements of the new environmental regulations, and the requirements of current functional safety standards. PSI5 not only features the capability to transmit highly accurate sensor data, high EMC robustness, bus capability, and bidirectional communication, but also offers savings in the cable harness and a reduced number of connector pins by using just two wires. It therefore offers enhanced technical functionality at a reasonable cost. To improve the environmental friendliness and sustainable operation of drive concepts, Bosch is also employing sophisticated and cross-linked sensors, actuators and control units. In addition, there is also the need to optimize system functions, weight, construction space and costs.
Technical Paper

AUTOSAR Gets on the Road - More and More

2012-04-16
2012-01-0014
AUTOSAR (AUTomotive Open System ARchitecture) is a worldwide standard for automotive basic software in line with an architecture that eases exchange and transfer of application software components between platforms or companies. AUTOSAR provides the standardized architecture together with the specifications of the basics software along with the methodology for developing embedded control units for automotive applications. AUTOSAR matured over the last several years through intensive development, implementation and maintenance. Two main releases (R3.2 and R4.0) represent its current degree of maturity. AUTOSAR is driven by so called core partners: leading car manufacturers (BMW, Daimler, Ford, GM, PSA, Toyota, Volkswagen) together with the tier 1 suppliers Continental and Bosch. AUTOSAR in total has more than 150 companies (OEM, Tier X suppliers, SW and tool suppliers, and silicon suppliers) as members from all over the world.
Technical Paper

Domain Control Units - the Solution for Future E/E Architectures?

2010-04-12
2010-01-0686
In order to master the increasing complexity of electrical/electronic (E/E) systems in vehicles, E/E architecture design has become an established discipline. The task of the E/E architecture design is to come up with solutions to challenging and often contradictory requirements such as reduced cost and increased flexibility / scalability. One way to optimize the E/E architecture in terms of cost (electronics & wiring harness) is to integrate functions. This can be done by either combining functions from multiple ECUs into a single ECU or by introducing Domain Control Units. Domain Control Units provide the main software functionality for a vehicle domain, while relegating the basic functions of actuator control to connected intelligent actuators. Depending on the different market segments (low price, volume and premium) and the different vehicle domains, the actual usage of Domain Control Units can be quite different and sometimes questionable.
Journal Article

Diesel Lubricity Requirements of Future Fuel Injection Equipment

2009-04-20
2009-01-0848
This paper looks at the underlying fundamentals of diesel fuel system lubrication for the highly-loaded contacts found in fuel injection equipment like high-pressure pumps. These types of contacts are already occurring in modern systems and their severity is likely to increase in future applications due to the requirement for increased fuel pressure. The aim of the work was to characterise the tribological behavior of these contacts when lubricated with diesel fuel and diesel fuel treated with lubricity additives and model nitrogen and sulphur compounds of different chemical composition. It is essential to understand the role of diesel fuel and of lubricity additives to ensure that future, more severely-loaded systems, will be free of any wear problem in the field.
Journal Article

Fault Diagnosis of Fully Variable Valve Actuators on a Four Cylinder Camless Engine

2008-04-14
2008-01-1353
Fully Variable Valve Actuation (FVVA) systems enable to employ a wide range of combustion strategies by providing the actuation of a gas exchange valve at an arbitrary point in time, with variable lift and adjustable ramps for opening and closing. Making such a system ready for the market requires appropriate fault-diagnostic functionality. Here, we focus on diagnosis possibilities by using air intake system sensors such as Manifold Absolute Pressure (MAP) sensors. Results obtained on a 4-cylinder test bench engine are presented for the early intake opening strategy under different loads, and at medium range rotational speeds on steady-state conditions. It is shown that detection and identification of the different critical faults on each actuator is possible by using a Fourier series signal model of the MAP sensor.
Technical Paper

The Challenge of Precise Characterizing the Specific Large-Span Flows in Urea Dosing Systems for NOx Reduction

2008-04-14
2008-01-1028
The reduction of nitrous oxides in the exhaust gases of internal combustion engines using a urea water solution is gaining more and more importance. While maintaining the future exhaust gas emission regulations, like the Euro 6 for passenger cars and the Euro 5 for commercial vehicles, urea dosing allows the engine management to be modified to improve fuel economy as well. The system manufacturer Robert Bosch has started early to develop the necessary dosing systems for the urea water solution. More than 300.000 Units have been delivered in 2007 for heavy duty applications. Typical dosing quantities for those systems are in the range of 0.01 l/h for passenger car systems and up to 10 l/h for commercial vehicles. During the first years of development and application of urea dosing systems, instantaneous flow measuring devices were used, which were not operating fully satisfactory.
Technical Paper

Simulation Tool Chain for the Estimation of EMC Characteristics of ECU Modules

2007-04-16
2007-01-1591
Electromagnetic Compatibility (EMC) requirements and the effort to fulfill them are increasing steadily in automotive applications. This paper demonstrates the usage of virtual prototyping to efficiently investigate the EMC behavior of a gasoline direct injection system. While the system worked functionally as designed, tests indicated that current and especially future client-specific EMC limits could not be met. The goal of this investigation was to identify and eliminate the cause of EMC emissions using a virtual software prototype including the controller ASIC, boost converter, pi filter, injection valves and wire harness. Applying virtual prototyping techniques it was possible to capture the motor control system in a simulation model which reproduced EMC measurements in the frequency ranges of interest.
Technical Paper

More Safety with Vehicle Stability Control

2007-01-28
2007-01-2759
Since introduction of safety belts in the 70s and airbags in the early 80s, these passive safety technologies have become standard in many markets. Remarkable improvement in passive safety, efforts to alter driver behaviour and infrastructural programmes have led to substantial reductions of fatalities in many regions, although the absolute number of highway fatalities increased e.g. in the USA in 2002 to the highest level since 1990. Electronic Stability Control (ESC) as an active safety technology assists the driver to keep the vehicle on the intended track and thereby actively prevents accidents. In 1995 Bosch was the first supplier to introduce ESC for the Mercedes-Benz S-Class, where it is marketed as ESP® - Electronic Stability Program. Since then, Bosch has produced more than 30 million systems worldwide. Many studies have now confirmed that ESC can prevent a vehicle from skidding or rolling over in nearly all driving situations.
Technical Paper

Improved Occupant Protection through Cooperation of Active and Passive Safety Systems – Combined Active and Passive Safety CAPS

2006-01-03
2006-01-1144
One of the most important aims of the automotive industry is to provide the best possible protection for drivers, passengers and pedestrians. Through their CAPS (Combined Active and Passive Safety) program (see Figure 1), Bosch is developing new functions which help to achieve these goals and contribute to accident mitigation and/or reduction of accident severity. By linking existing active and passive automobile safety systems and extending these by adding systems for monitoring and evaluating the vehicle's environment, the foundation for new safety functions is created. The growing number of airbags in vehicles provides more and better protection against injury for the occupants. In addition, active safety systems such as the ESP® Electronic Stability Program help to prevent an accident occurring in the first place. If these systems are linked together, they can share information and provide even better safety for drivers and passengers through new functions.
Technical Paper

Expansion Devices for R-744 MAC Units

2005-05-10
2005-01-2041
In mobile R-744 A/C units mechanical expansion devices (e.g. orifice tubes) or electronic valves (e.g. PWM-valves) can be used. Besides the costs, aspects like coefficient of performance (COP), cooling capacity or control behavior - especially for extreme conditions - influence the choice of the valve type. This paper will present a comparison between an ideal electronic valve and a two stage mechanical orifice tube under full load and part load conditions. The influence of the expansion valve on COP and cooling capacity in different ambient conditions can be sufficiently described with steady-state simulations. The simulation tools used for this work are based on Modelica/Dymola. The simulation results show that for European climate conditions the use of two-stage orifices might increase fuel consumption.
X