Refine Your Search

Topic

Author

Search Results

Technical Paper

GPS Coordinates Based Route Recognition and Predictive Functions

2022-10-05
2022-28-0124
Historically, whenever the automotive solutions’ state of art reaches a saturation level, the integration of new verticals of technology has always raised new opportunities to innovate, enhance and optimize automotive solutions. The predictive powertrain solutions using connectivity elements (e.g., navigation unit, e-Horizon or cloud-based services) are one of such areas of huge interest in automotive industry. The prior knowledge of trip destination and its route characteristics has potential to make prediction of powertrain modes or events in certain order and therefore it can add value in various application areas such as optimized energy management, lower fuel consumption, superior safety and comfort, etc.
Technical Paper

eFMI (FMI for Embedded Systems) in AUTOSAR for Next Generation Automotive Software Development

2021-09-22
2021-26-0048
Nowadays automobiles are getting smart and there is a growing need for the physical behavior to become part of its software. This behavior can be described in a compact form by differential equations obtained from modeling and simulation tools. In the offline simulation domain the Functional Mockup Interface (FMI) [3], a popular standard today supported by many tools, allows to integrate a model with solver (Co-Simulation FMU) into another simulation environment. These models cannot be directly integrated into embedded automotive software due to special restrictions with respect to hard real-time constraints and MISRA compliance. Another architectural restriction is organizing software components according to the AUTOSAR standard which is typically not supported by the physical modeling tools. On the other hand AUTOSAR generating tools do not have the required advanced symbolic and numerical features to process differential equations.
Technical Paper

Towards Establishing Continuous-X Pipeline Using Modular Software-in-the-Loop Test Environments

2021-09-22
2021-26-0412
Software-in-the-Loop (SiL) test environments are the ideal virtual platforms for enabling continuous-development, -integration, -testing -delivery or -deployment commonly referred as Continuous-X (CX) of the complex functionalities in the current automotive industry. This trend especially is contributed by several factors such as the industry wide standardization of the model exchange formats, interfaces as well as architecture definitions. The approach of frontloading software testing with SiL test environments is predominantly advocated as well as already adopted by various Automotive OEMs, thereby the demand for innovating applicable methods is increasing. However, prominent usage of the existing monolithic architecture for interaction of various elements in the SiL environment, without regarding the separation between functional and non-functional test scope, is reducing the usability and thus limiting significantly the cost saving potential of CX with SiL.
Technical Paper

Multi Domain Modeling of NVH for Electro-Mechanical Drives

2020-09-30
2020-01-1584
Acoustics and vibrations are amongst the foremost indicators in perceiving the quality of drive units. Analyzing these factors is vital for improve the performances of electro-mechanical systems. This paper deals with the study of vibro-acoustic behavior concerning the drivetrain components using system modeling and Finite Element calculations. A generic simulation methodology within system modeling is proposed enabling the vibro-acoustic simulation of electro-mechanical drivetrains. Excitations for these systems mostly arise from the electric motor and mechanical gears. The paper initially depicts the system model for gear whining considering the associated nonlinearities of the mesh. The results obtained from the gear mesh submodel, together with the excitations resulting from the motor, aid in the comprehension of the forces at the bearings and of the vibrations at the housings.
Technical Paper

Analyze This! Sound Static Analysis for Integration Verification of Large-Scale Automotive Software

2019-04-02
2019-01-1246
Safety-critical embedded software has to satisfy stringent quality requirements. One such requirement, imposed by all contemporary safety standards, is that no critical run-time errors must occur. Runtime errors can be caused by undefined or unspecified behavior of the programming language; examples are buffer overflows or data races. They may cause erroneous or erratic behavior, induce system failures, and constitute security vulnerabilities. A sound static analyzer reports all such defects in the code, or proves their absence. Sound static program analysis is a verification technique recommended by ISO/FDIS 26262 for software unit verification and for the verification of software integration. In this article we propose an analysis methodology that has been implemented with the static analyzer Astrée. It supports quick turn-around times and gives highly precise whole-program results.
Technical Paper

Comparison of Shadowgraph Imaging, Laser-Doppler Anemometry and X-Ray Imaging for the Analysis of Near Nozzle Velocities of GDI Fuel Injectors

2017-10-08
2017-01-2302
The fuel spray behavior in the near nozzle region of a gasoline injector is challenging to predict due to existing pressure gradients and turbulences of the internal flow and in-nozzle cavitation. Therefore, statistical parameters for spray characterization through experiments must be considered. The characterization of spray velocity fields in the near-nozzle region is of particular importance as the velocity information is crucial in understanding the hydrodynamic processes which take place further downstream during fuel atomization and mixture formation. This knowledge is needed in order to optimize injector nozzles for future requirements. In this study, the results of three experimental approaches for determination of spray velocity in the near-nozzle region are presented. Two different injector nozzle types were measured through high-speed shadowgraph imaging, Laser Doppler Anemometry (LDA) and X-ray imaging.
Technical Paper

FMI for Physics-Based Models on AUTOSAR Platforms

2017-01-10
2017-26-0358
As automobiles become increasingly smarter, the need to understand within the automotive software the physical behavior of its parts is growing as well. The laws of physics governing such behavior are mostly formulated as differential equations, which today are usually created or obtained from various modeling tools. For solving them, the tools offer several solvers to satisfy the requirements of different problems. E.g. simple and fast explicit low order solvers for non-stiff problems and more complex implicit solvers for stiff problems. Though the modeling and code generation features as available in such tools are desirable for embedded automotive software, they cannot be used directly due to special restrictions with respect to hard realtime constraints. One such restriction is the organization of automotive software in components complying with the AUTOSAR standard which is not widely supported by the modeling tools.
Journal Article

Side View Assist - The World’s First Rider Assistance System for Two-Wheelers

2016-11-08
2016-32-0052
The Side View Assist is the World’s first rider assistance system for two-wheelers. This is a Blind Spot Warning system, which uses four ultrasonic sensors to monitor the surrounding of the rider. Whenever there is a vehicle (i.e. a car, truck, or another motorbike) in the rider’s blind spot, the technology warns the rider with an optical signal close to the mirror. This will allow the rider to avoid a collision when changing lanes. In the current vehicle application, Side View Assist is active at speeds ranging from 25 to 80 kilometers per hour and supports riders whenever the difference in relative speed to other road users is small. The system helps to improve safety especially in cities, where heavy traffic makes it necessary to change lanes more often. Originally such systems have been developed for cars and different system solutions for cars have been in serial production for several years. The challenge was to adapt these systems so they would work for two-wheelers as well.
Journal Article

Alternative Engine Speed Sensing Using the Electric Signals of the Alternator

2016-11-08
2016-32-0088
In the low-cost segment for 2-Wheelers legislative, economic and ecologic considerations necessitate a reduction of the emissions and further improvement in fuel consumption. To reach these targets, the commonly used carburetors are being replaced by engine management systems (EMS). One option to provide these systems for acceptable and attractive system costs is to save a sensor device and to substitute its measure by an estimation value. In many motorcycles the rotor of the vehicle's alternator is rigidly attached to the crankshaft. Therefore, the voltage and current signals of the alternator contain information about the engine's speed, which can be retrieved by evaluating these electric signals. After further processing of this information inside the electronic control unit (ECU), the absolute crankshaft position can be obtained. A high-resolution speed signal without mechanical distortions like tooth errors is gained, whose signal quality equals the one of a common speed sensor.
Technical Paper

Flex Fuel Software Maintainability Improvement: A Case Study

2016-10-25
2016-36-0214
Many software functions currently available in the engine control units have been developed for several years (decades in some cases), reengineered or adapted due to new requirements, what may add to their inherent complexity an unnecessary complication. This paper deals with the study and implementation of a software reengineering strategy for the embedded domain, which is in transfer from research department to product development, here applied to improve maintainability of flex fuel functions. The strategy uses the SCODE “Essential Analysis”, an approach for the embedded system domain. The method allows to reduce the system complexity to the unavoidable inherent problem complexity, by decomposing the system into smaller sub problems based on its essential physics. A case study was carried out to redesign a function of fuel adaptation. The analysis was performed with the support of a tool, which covers all the phases of the method.
Technical Paper

On the Evaluation Methods for Systematic Further Development of Direct-Injection Nozzles

2016-10-17
2016-01-2200
To satisfy future emission classes, e.g. EU6c, the particulate number (PN) of Direct-Injection Spark-Ignition (DISI) engines must be reduced. For these engines, different components influence the combustion process and thus also the formation of soot particles and deposits. Along with other engine components, the injector nozzle influences the particulate number and deposits in both fuel spray behavior and nozzle “tip wetting”. In case of non-optimized nozzle layouts, fuel may impinge on the piston and the liner in an unfavorable way, which implies low-oxygen diffusive combustion by retarded vaporizing wall films. For the tip wetting, wall films are present on the actual surface of the nozzle tip, which is also caused by unadapted nozzles. For non-optimized nozzles, the latter effect can become quite dominant. This paper deals with systematic nozzle development activities towards low-deposit nozzle tips and thus decreasing PN values.
Technical Paper

Numerical and Experimental Studies on Mixture Formation with an Outward-Opening Nozzle in a SI Engine with CNG-DI

2016-04-05
2016-01-0801
CNG direct injection is a promising technology to promote the acceptance of natural gas engines. Among the beneficial properties of CNG, like reduced pollutants and CO2 emissions, the direct injection contributes to a higher volumetric efficiency and thus to a better driveability, one of the most limiting drawbacks of today’s CNG vehicles. But such a combustion concept increases the demands on the injection system and mixture formation. Among other things it requires a much higher flow rate at low injection pressure. This can be only provided by an outward-opening nozzle due to its large cross-section. Nevertheless its hollow cone jet with a specific propagation behavior leads to an adverse fuel-air distribution especially at higher loads under scavenging conditions. This paper covers numerical and experimental analysis of CNG direct injection to understand its mixture formation.
Technical Paper

Holistic Approach for Improved Safety Including a Proposal of New Virtual Test Conditions of Small Electric Vehicles

2015-04-14
2015-01-0571
In the next 20 years the share of small electric vehicles (SEVs) will increase especially in urban areas. SEVs show distinctive design differences compared to traditional vehicles. Thus the consequences of impacts of SEVs with vulnerable road users (VRUs) and other vehicles will be different from traditional collisions. No assessment concerning vehicle safety is defined for vehicles within European L7e category currently. Focus of the elaborated methodology is to define appropriate test scenarios for this vehicle category to be used within a virtual tool chain. A virtual tool chain has to be defined for the realization of a guideline of virtual certification. The derivation and development of new test conditions for SEVs are described and are the main focus of this work. As key methodology a prospective methodical analysis under consideration of future aspects like pre-crash safety systems is applied.
Technical Paper

Desktop Simulation and Calibration of Diesel Engine ECU Software using Software-in-the-Loop Methodology

2014-04-01
2014-01-0189
Current exhaust gas emission regulations can only be well adhered to through optimal interplay of combustion engine and exhaust gas after-treatment systems. Combining a modern diesel engine with several exhaust gas after-treatment components (DPF, catalytic converters) leads to extremely complex drive systems, with very complex and technically demanding control systems. Current engine ECUs (Electronic Control Unit) have hundreds of functions with thousands of parameters that can be adapted to keep the exhaust gas emissions within the given limits. Each of these functions has to be calibrated and tested in accordance with the rest of the ECU software. To date this task has been performed mostly on engine test benches or in Hardware-in-the-Loop (HiL) setups. In this paper, a Software-in-the-Loop (SiL) approach, consisting of an engine model and an exhaust gas treatment (EGT) model, coupled with software from a real diesel engine ECU, will be described in detail.
Technical Paper

Knock Control on Small Four-Two-Wheeler Engines

2012-10-23
2012-32-0052
Today, knock control is part of standard automotive engine management systems. The structure-borne noise of the knock sensor signal is evaluated in the electronic control unit (ECU). In case of knocking combustions the ignition angle is first retarded and then subsequently advanced again. The small-sized combustion chamber of small two-wheeler engines, uncritical compression ratios and strong enrichment decrease the knock tendency. Nevertheless, knock control can effectuate higher performance, lower fuel consumption, compliance with lower legally demanded emission limits, and the possibility of using different fuel qualities. The Knock-Intensity-Detector 2 (KID2) and the Bosch knock control tool chain, based on many years of experience gained on automotive engines, provides an efficient calibration method that can also be used for two-wheeler engines. The raw signal of the structure-borne noise is used for signal analysis and simulation of different filter settings.
Journal Article

Internet Protocol over Ethernet in Powertrain - Comparison with Current Applications and Future Trends

2012-04-16
2012-01-0195
The increasing number of electronic control units (ECUs) in vehicles leads to more and more complex systems with a steadily growing demand for data exchange. This growth includes the number of bus participants, the amount of data and hence the data transfer rates. In addition, the trend towards car-to-x connectivity reinforces the need for new in-vehicle communication solutions. Since the early 1990s Controller Area Network (CAN) is the most widely used powertrain bus system. Since 2000 FlexRay is used in addition to CAN in the premium segment. For classic powertrain applications, the data transfer rates of these bus systems are sufficient; however the utilization is sometimes difficult and gateways are often required. For new applications like hybrid and electric vehicles and the next generation of external communication applications (e.g. telematics services) new concepts based on the existing bus systems or completely new solutions are needed.
Technical Paper

AUTOSAR Gets on the Road - More and More

2012-04-16
2012-01-0014
AUTOSAR (AUTomotive Open System ARchitecture) is a worldwide standard for automotive basic software in line with an architecture that eases exchange and transfer of application software components between platforms or companies. AUTOSAR provides the standardized architecture together with the specifications of the basics software along with the methodology for developing embedded control units for automotive applications. AUTOSAR matured over the last several years through intensive development, implementation and maintenance. Two main releases (R3.2 and R4.0) represent its current degree of maturity. AUTOSAR is driven by so called core partners: leading car manufacturers (BMW, Daimler, Ford, GM, PSA, Toyota, Volkswagen) together with the tier 1 suppliers Continental and Bosch. AUTOSAR in total has more than 150 companies (OEM, Tier X suppliers, SW and tool suppliers, and silicon suppliers) as members from all over the world.
Technical Paper

Low Cost Battery Sensor Algorithm

2011-10-06
2011-28-0021
With the development of start stop technology to improve fuel economy and to reduce carbon dioxide (CO2) emissions, the information of State of Charge (SOC) of the battery is highly desirable. Recent days the battery sensors are used in mid-segment and luxury automobiles that monitors the current, voltage and temperature of the battery and calculates the charge model and sends the information via CAN or LIN. These dedicated sensors are intended to perform various functions other than basic start stop. Hence these sensors are proven to be expensive for emerging market, which is intended to perform only basic start stop as the market is looking for a low cost solution. Bosch- India has developed and implemented a novel idea of bringing a low cost and reliable battery charge detection algorithm that can be realized within the Electronic Control Unit (ECU) without a dedicated sensor.
Technical Paper

Ethernet and IP - The Solution to Master Complexity, Safety and Security in Vehicle Communication Networks?

2011-04-12
2011-01-1042
The development of vehicle communication networks is challenged not only by the increasing demand in data exchange and required data rate but also the need to connect the vehicle to external sources for personal connectivity of driver and car to infrastructure applications. Solutions are required to master complexity of in-vehicle communication networks, e.g. diagnostic access, flashing of Electronic Control Units, the data backbone connecting the vehicle domains and the data transfer of cameras. Safety (data transfer) and security (violation) issues of the communication networks gain more importance especially by introducing interfaces to external sources either via mobile devices or by connecting the vehicle to other external sources, e.g. Internet and Car to Infrastructure applications. The Internet Protocol (IP) appears to be an ideal solution to address these challenges, especially in connection with an Ethernet physical layer for fast data transfer.
Technical Paper

ISO 26262 Release Just Ahead: Remaining Problems and Proposals for Solutions

2011-04-12
2011-01-1000
The release of ISO 26262 is only about three months after the 2011 World Congress. However, there are still some contentious aspects that can introduce challenges or cause a disproportionate effort. In this paper, we will show how to avoid these problems. ISO 26262 provides a detailed method for classifying the Automotive Safely Integrity Level (ASIL) of in-vehicle electronic systems. However, the ASIL value for a specific function/product can vary significantly across the industry. Applying a lower level than the industry norm can cause substantial liability problems. Applying a higher level can initiate an “arms race” with competitors. This is particularly true if there are no vehicle-related reasons for choosing the higher level or if it doesn't make the product any safer. To encourage international harmonization, this paper will define ASIL classifications for the main automotive components. Most functions/products are currently being developed using parts of existing products.
X