Refine Your Search

Topic

Author

Search Results

Technical Paper

Fuel Sensitivity Affects on the Knock and CoV Limits of a Spark Ignited Engine

2024-04-09
2024-01-2816
Engine knock is one of the limiting factors in determining the compression ratio and engine efficiency for spark ignited engines. Using the Southwest Research Institute Knock-CoV test method, it was previously shown that the knock limited load versus combustion phasing (CA50) has a constant slope. All of the knock mitigation strategies tested provided a shift to these knock limited loads but also increased the slope. That is, for the same CA50 retard the knock limited load could be increased more. Our hypothesis was that due to fuel sensitivity, or the difference between the RON and MON, the reactions that lead to knock will behave differently as the pressure-temperature history changes with engine speeds and loads. The fuel affects on the knock and CoV limits were studied by testing fuels with various sensitivities including methanol, E85 (85% ethanol) and Iso-octane.
Technical Paper

Analysis of Real-World Preignition Data Using Neural Networks

2023-10-31
2023-01-1614
1Increasing adoption of downsized, boosted, spark-ignition engines has improved vehicle fuel economy, and continued improvement is desirable to reduce carbon emissions in the near-term. However, this strategy is limited by damaging preignition events which can cause hardware failure. Research to date has shed light on various contributing factors related to fuel and lubricant properties as well as calibration strategies, but the causal factors behind an individual preignition cycle remain elusive. If actionable precursors could be identified, mitigation through active control strategies would be possible. This paper uses artificial neural networks to search for identifiable precursors in the cylinder pressure data from a large real-world data set containing many preignition cycles. It is found that while follow-up preignition cycles in clusters can be readily predicted, the initial preignition cycle is not predictable based on features of the cylinder pressure.
Technical Paper

Experimental Demonstration of a High-Efficiency Split-Intake D-EGR Engine Concept

2023-04-11
2023-01-0237
Dedicated-EGR™ (D-EGR™) is a concept where the exhaust of one dedicated cylinder (D-Cyl) is routed into the intake thus producing EGR to be used by the whole engine. The D-Cyl operates rich of stochiometric which produces syngas that enhances the EGR stream permitting faster combustion and greater knock mitigation. Operating an engine using D-EGR improves the knock resistance which can permit a higher compression ratio (CR) thereby increasing efficiency. One challenge of traditional D-EGR is that the D-Cyl combustion becomes unstable operating with both rich and EGR dilute conditions. Therefore, the ‘Split Intake D-EGR’ concept seeks to resolve this problem by feeding fresh air to the D-Cyl, thus allowing even richer operation in the D-Cyl which further increases the H2 and CO yield thereby enhancing the efficiency benefits.
Technical Paper

A New Methodology for Comparing Knock Mitigation Strategies and Their Stability Margin

2023-04-11
2023-01-0248
The automotive sector is rapidly transitioning to decarbonized, electric vehicles solutions. However, due to challenges with such rapid adoption, Internal combustion engines (ICE) are expected to be used for decades to come. In this transition period it is important to continue to improve ICE efficiency. A key design parameter to increase ICE efficiency is the compression ratio. For gasoline engines, the compression ratio is limited so as to avoid knock. Engine designers can employ several strategies to mitigate knock and enable higher compression ratios. In this study, a new methodology has been developed to compare various knock mitigation strategies. By comparing the knock limited load at a given combustion phasing the expected compression ratio increase can be inferred.
Technical Paper

Benefits of a Dual HP and LP EGR Circuit on a Turbocharged Direct Injection Gasoline Engine

2022-03-29
2022-01-0429
Internal combustion engines (ICE) will be a part of personal transportation for the foreseeable future. One recent trend for engines has been downsizing which enables the engine to be run more efficiently over regulatory drive cycles. Due to downsizing, engine power density has increased which leads to problems with engine knock. Therefore, there is an increasing need to find a means to reduce the knock propensity of downsized engines. One of the ways of reducing knock propensity is by introducing Exhaust Gas Recirculation (EGR) into the combustion chamber, however, volumetric efficiency also reduces with EGR which places challenges on the boosting system. The individual benefits of high-pressure (HP-EGR) and low-pressure (LP-EGR) loop EGR system to assist the boosting system of a 2.0 L Gasoline Direct Injection (GDI) production engine are explored in this paper.
Technical Paper

A Comparison of EGR Condensate Composition between EGR and Dedicated-EGR Combustion Strategies

2021-04-06
2021-01-0484
Water injection is an effective method for knock control in spark-ignition engines. However, the requirement of a separate water source and the cost and complexity associated with a fully integrated system creates a limitation of this method to be used in volume production engines. The engine exhaust typically contains 10-15% water vapor by volume which could be condensed and potentially stored for future use. In this study, the exhaust condensate composition was assessed for its use as an effective replacement for distilled water. Specifically, condensate samples were collected pre and post-three-way catalyst (TWC) and analyzed for acidity and composition. The composition of the pre and post-TWC condensates was found to be similar however, the pre-TWC condensate was mildly acidic. The mild acidity has the potential to corrode certain components in the intake air circuit.
Journal Article

Ignition Delay Model Parameterization Using Single-Cylinder Engines Data

2020-09-15
2020-01-2005
The confluence of increasing fuel economy requirements and increased use of ethanol as a gasoline blend component has led to various studies into the efficiency and performance benefits of higher octane numbers and high ethanol content fuels in modern engines. As part of a comprehensive study of the autoignition of different fuels in both the CFR octane rating engine and a modern, direct injection, turbocharged spark-ignited engine, a series of fuel blends were prepared with varying composition, octane numbers and ethanol blend levels. The paper reports on the third part of this study where cylinder pressures were recorded for fuels under knocking conditions in both a single-cylinder research engine (SCE), utilizing a GM LHU head and piston, as well as the CFR engines used for octane ratings.
Journal Article

Bridging the Knock Severity Gap to CFR Octane Rating Engines

2020-09-15
2020-01-2050
It is widely acknowledged that the CFR octane rating engines are not representative of modern engines and that there is a gap in the quantification of knock severity between the two engine types. As part of a comprehensive study of the autoignition of different fuels in both the CFR octane rating engines and a modern, direct injection, turbocharged spark-ignited engine, a series of fuel blends were tested with varying composition, octane numbers and ethanol blend levels. The paper reports on the fourth part of this study where cylinder pressures were recorded under standard knock conditions in CFR engines under RON and MON conditions using the ASTM prescribed instrumentation. By the appropriate signal conditioning of the D1 detonation pickups on the CFR engines, a quantification of the knock severity was possible that had the same frequency response as a cylinder pressure transducer.
Journal Article

Detailed Analyses and Correlation of Fuel Effects on Stochastic Preignition

2020-04-14
2020-01-0612
Stochastic or Low-Speed Preignition (SPI or LSPI) is an undesirable abnormal combustion phenomenon encountered in spark-ignition engines. It is characterized by very early heat release and high cylinder pressure and can cause knock, noise and ultimately engine damage. Much of the focus on mitigating SPI has been directed towards the engine oil formulation, leading to the emergence of the Sequence IX test and second-generation GM dexos® oil requirements. Engine design, calibration and fuels also contribute to the prevalence of SPI. As part of a recently completed research consortium, a series of engine tests were completed to determine the impact of fuel composition on SPI frequency. The fuel blends had varying levels of paraffins, olefins, aromatics and ethanol.
Technical Paper

Comparing Knock between the CFR Engine and a Single Cylinder Research Engine

2019-12-19
2019-01-2156
The confluence of increasing fuel economy requirements and increased use of ethanol as a gasoline blend component has led to various studies into the efficiency and performance benefits of higher octane numbers and high ethanol content fuels in modern engines. As part of a comprehensive study of the autoignition of different fuels in both the CFR octane rating engine and a modern, direct injection, turbocharged spark ignited engine, a series of fuel blends were prepared with varying composition, octane numbers and ethanol blend levels. The paper reports on the second part of this study where cylinder pressures were recorded for fuels under knocking conditions in both a single cylinder research engine (SCRE), utilizing a GM LHU head and piston, as well as the CFR engines used for octane ratings.
Technical Paper

Semi-Volatile Organic Compounds from a Combined Dual Port Injection/Direct-Injection Technology Light-Duty Gasoline Vehicle

2019-09-09
2019-24-0051
Gasoline direct injection (GDI) has changed the exhaust composition in comparison with the older port fuel injection (PFI) systems. More recently, light-duty vehicle engine manufactures have combined these two technologies to take advantage of the knock benefits and fuel economy of GDI with the low particulate emission of PFI. These dual injection strategy engines have made a change in the combustion emission composition produced by these engines. Understanding the impact of these changes is essential for automotive companies and aftertreatment developers. A novel sampling system was designed to sample the exhaust generated by a dual injection strategy gasoline vehicle using the United States Federal Test Procedure (FTP). This sampling system was capable of measuring the regulated emissions as well as collecting the entire exhaust from the vehicle for measuring unregulated emissions.
Technical Paper

Evaluation of Gasoline Additive Packages to Assess Their Ability to Clean Up Intake Valve Deposits in Automotive Engines

2019-04-02
2019-01-0261
The majority of passenger car and light-duty trucks, especially in North America, operate using port-fuel injection (PFI) engines. In PFI engines, the fuel is injected onto the intake valves and then pulled into the combustion chamber during the intake stroke. Components of the fuel are unstable in this environment and form deposits on the upstream face of the intake valve. These deposits have been found to affect a vehicle’s drivability, emissions and engine performance. Therefore, it is critical for the gasoline to be blended with additives containing detergents capable of removing the harmful intake valve deposits (IVDs). Established standards are available to measure the propensity of IVD formation, for example the ASTM D6201 engine test and ASTM D5500 vehicle test.
Technical Paper

Vehicle Drive Cycle Fuel Economy Prediction Using Single Cylinder Engine Data

2019-04-02
2019-01-0628
The confluence of fuel economy improvement requirements and increased use of ethanol as a gasoline blend component has led to various studies into the efficiency and performance benefits to be had when using high octane number, high ethanol content fuels in modern engines. As part of a comprehensive study of the autoignition of fuels in both the CFR octane rating engine and a modern, direct injection, turbocharged spark ignited engine, a series of fuel blends were prepared with market relevant ranges of octane numbers and ethanol blends levels. The paper reports on the first part of this study where fuel flow measurements were done on a single cylinder research engine, utilizing a GM LHU combustion system, and then used to predict drive cycle fuel economy. For a range of engine speeds and manifold air pressures, spark timing was adjusted to achieve either the maximum brake torque (MBT) or a matched 50 % mass fraction burnt location.
Technical Paper

Particle Emissions from Gasoline Direct Injection Engines during Engine Start-Up (Cranking)

2019-04-02
2019-01-1182
Engine start-up (cranking) can be an important source of particle emissions from vehicles. With the penetration of GDI vehicles in the global vehicle fleet, it is important to analyze and understand the contribution of start-up particle emissions from GDI vehicles, and the potential effects of fuel properties on that process. In this work, chassis dynamometer based investigation on the effect of several gasoline fuels (commercial and blended) on both, naturally aspirated and turbocharged GDI vehicles were conducted to understand the importance of engine start up, in particular, cranking. 10 commercially available gasoline fuels were tested on a naturally aspirated 2010 model year GDI vehicle, 3 among these commercially available fuels were tested on another 2009 model year turbocharged GDI vehicle, and 8 blended gasoline fuels were tested on 12 other GDI vehicles (7 turbocharged and 5 naturally aspirated) ranging in model years 2011-2015.
Technical Paper

Microwave Enhancement of Lean/Dilute Combustion in a Constant-Volume Chamber

2019-04-02
2019-01-1198
High dilution engines have been shown to have a significant fuel economy improvement over their non-dilute counterparts. Much of this improvement comes through an increase in compression ratio enabled by the high knock resistance from high dilution. Unfortunately, the same reduction in reactivity that leads to the knock reduction also reduces flame speed, leading to the engine becoming unstable at high dilution rates. Advanced ignition systems have been shown to improve engine stability, but their impact is limited to the area at, or very near, the spark plug. To further improve the dilute combustion, a system in which a microwave field is established in the combustion chamber is proposed. This standing electric field has been shown, in other applications, to improve dilution tolerance and increase the burning velocity.
Technical Paper

Combined Benefits of Variable Valve Actuation and Low-Pressure EGR on SI Engine Efficiency Part 2: High Load

2019-04-02
2019-01-0237
The abnormal autoignition of the unburned gas, namely knock, at high loads is a major challenge for modern spark ignited engines. Knock prevents the application of high compression ratios due to the increased unburned gas temperature, and it becomes increasingly severe for downsized engines with high specific powers. The current paper reports on the potential of utilizing continuously variable valve actuation (VVA) and low-pressure exhaust gas recirculation (EGR) to reduce knock tendency at high loads. Five speed / load points were investigated on a 1.6 L turbocharged gasoline direct injection engine. The brake specific fuel consumption (BSFC) response to the valve phasing and the intake valve lift was investigated with the design of experiment (DoE) approach. The DoE was conducted using a Box-Behnken surface response model. The results exhibited insensitive response of BSFC to intake valve lift and overlap.
Technical Paper

Combined Fuel and Lubricant Effects on Low Speed Pre-Ignition

2018-09-10
2018-01-1669
Many studies on low speed pre-ignition have been published to investigate the impact of fuel properties and of lubricant properties. Fuels with high aromatic content or higher distillation temperatures have been shown to increase LSPI activity. The results have also shown that oil additives such as calcium sulfonate tend to increase the occurrence of LSPI while others such as magnesium sulfonate tend to decrease the occurrence. Very few studies have varied the fuel and oil properties at the same time. This approach is useful in isolating only the impact of the oil or the fuel, but both fluids impact the LSPI behavior of the engine simultaneously. To understand how the lubricant and fuel impacts on LSPI interact, a series of LSPI tests were performed with a matrix which combined fuels and lubricants with a range of LSPI activity. This study was intended to determine if a low activity lubricant could suppress the increased LSPI from a high activity fuel, and vice versa.
Technical Paper

Comparison of Accelerated Ash Loading Methods for Gasoline Particulate Filters

2018-09-10
2018-01-1703
Recent legislation enacted for the European Union (EU) and the United States calls for a substantial reduction in particulate mass (and number in the EU) emissions from gasoline spark-ignited vehicles. The most prominent technology being evaluated to reduce particulate emissions from a gasoline vehicle is a wall flow filter known as a gasoline particulate filter (GPF). Similar in nature to a diesel particulate filter (DPF), the GPF will trap and store particulate emissions from the engine, and oxidize said particulate with frequent regeneration events. The GPF will also collect ash particles in the wall flow substrate, which are metallic components that cannot be oxidized into gaseous components. Due to high temperature operation and frequent regeneration of the GPF, the impact of ash on the GPF has the potential to be substantially different from the impact of ash on the DPF.
Technical Paper

On-Road Monitoring of Low Speed Pre-Ignition

2018-09-10
2018-01-1676
To meet increasingly stringent emissions and fuel economy regulations, many Original Equipment Manufacturers (OEMs) have recently developed and deployed small, high power density engines. Turbocharging, coupled with gasoline direct injection (GDI) has enabled a rapid engine downsizing trend. While these turbocharged GDI (TGDI) engines have indeed allowed for better fuel economy in many light duty vehicles, TGDI technology has also led to some unintended consequences. The most notable of these is an abnormal combustion phenomenon known as low speed pre-ignition (LSPI). LSPI is an uncontrolled combustion event that takes place prior to spark ignition, often resulting in knock, and has been known to cause catastrophic engine damage. LSPI propensity depends on a number of factors including engine design, calibration, fuel properties and engine oil formulation. Several engine tests have been developed within the industry to better understand the phenomenon of LSPI.
Technical Paper

Development of a Standardized Test to Evaluate the Effect of Gasoline Engine Oil on the Occurrence of Low Speed Pre-Ignition - The Sequence IX Test

2018-09-10
2018-01-1808
The study described in this paper covers the development of the Sequence IX Low Speed Pre-Ignition (LSPI) test for the new engine oil category, ILSAC GF-6. The purpose of the Sequence IX test is to evaluate a lubricant’s ability to protect against LSPI events which are prevalent when operating a highly boosted/downsized gasoline direct-injected engine. LSPI is characterized as a combustion event that starts before ignition spark, typically followed by excessive in-cylinder pressures and heavy knock, which can cause severe engine damage and failure. Industry research has shown that oil formulation can contribute to the frequency of LSPI activity. The Sequence IX test was developed using a turbocharged gasoline direct-injected 2.0 liter Ford Ecoboost engine with dual independent variable cam timing. The engine was modified with in-cylinder pressure sensors and a high-resolution crank angle encoder to characterize individual engine combustion cycles and identify potential LSPI events.
X