Refine Your Search

Search Results

Viewing 1 to 12 of 12
Journal Article

Optimizing the Tribological Process Parameters of Calcium Hexaboride Reinforced Magnesium Composite Using Grey Relational Analysis

2022-12-23
2022-28-0567
Different weight percentages (0, 1 and 2 wt. %) of Calcium hexaboride (CaB6) is reinforced with pure magnesium and the composite is fabricated through powder metallurgy technique. The fabricated samples are used for the tribological evaluation. In this connection, the Taguchi optimization technique (L27 Orthogonal array) assisted Grey Relational analysis is used for predicting the significant factors to the tribological evaluation. The magnesium composite wear rate is evaluated by Archard’s mass loss method. Based on the obtained results, it is observed that the magnesium composite wear rate is increased by the effect of an increase in load. It was arising as a result of enhanced delamination wear mechanism which is confirmed by SEM observation on the worn-out pin surface.
Technical Paper

Assessment of the Metallurgical and Mechanical Properties of Stir cum Squeeze Cast A356 with 5wt. % SiC and x wt. % Flyash Hybrid Composites

2020-09-25
2020-28-0397
The forged connecting rod and pin experience a large amount of stresses due to cyclic load for a long period of time induced by the reciprocating movement of the piston. The proposed work focused to produce lightweight composites with high strength using waste flyash and simple manufacturing process. In this context, the proposed experimental work was formulated to develop aluminium alloy hybrid metal matrix composite of A356 alloy with silicon carbide and flyash processed through stir cum squeeze casting process under optimal parametric condition. The samples were subjected to varying flyash content of 0, 5, 10wt.% and SiC of 5wt.% kept constant. Responses like metallography, hardness, impact strength, flexural strength, fatigue strength were observed for the manufactured hybrid composites. There was a significant improvement in the properties with a higher weight percentage addition of 10wt.% flyash and 5wt.% SiC with A356 hybrid composites.
Technical Paper

The Effect of Print Orientation and Infill Density for 3D Printing on Mechanical and Tribological Properties

2020-09-25
2020-28-0411
The 3D Printing (3DP) technology due to its greatest strength, resistance to wear and corrosion to oxidizing agents and has good temperature resistance with durable one. The present article describes the effect of print orientation and infill density of 3DP route on mechanical and tribological properties of PETG filament. The 3DP parameters like layer thickness, slicing, speed, feed are kept as constant and by varying the print orientation (X, Y, Z) with infill density (50%, 75%, 100%) was printed to check the effect of it on mechanical and tribological properties like hardness, impact strength, ultimate tensile strength, flexural strength, wear rate and coefficient of friction. The results shows that all the tested mechanical and tribological properties increase by around 30-60% when the orientation is in the X direction at infill density of 100%.
Technical Paper

Enhancing the Mechanical and Metallurgical Behavior of Post-Processing on Friction Stir Processed AA8011 with NiTi-SMAs and Si3N4 Surface Hybrid Composites

2020-09-25
2020-28-0419
This limited research was extended to study the modification surface amendment of materials through Friction Stir Process (FSP) with nanoparticle addition followed by the post-processing method. In this paper, strengthened core and surface properties of AA8011 has been enhanced by adding nanoparticles such as Nitinol shape memory alloy (NiTi-SMAs) and silicon nitrate (Si3N4) through FSP followed by two different way of post-processing techniques like case hardening, case harden with shot peening. During FSP the use of NiTi-SMAs and Si3N4 as reinforcement interlocked the grains in hybrid nano composites of the processed zone. Also besides, post-processing promises a performance enhancement of core and surface hardness, ultimate tensile strength, impact strength and homogeneous distribution which was observed through scanning electron microscopic observations.
Technical Paper

Enhancing the Tribological Properties PETG and CFPETG Composites Fabricated by FDM via Various Infill Density and Annealing

2020-09-25
2020-28-0429
One of the prominent representatives of heat-resistant polymers was the class of Polyethylene Terephthalate Glycol (PETG) with high-strength, but still lightweight. The carbon fiber with PETG (CFPETG) composites also gives even more resistance to heat and chemical, creating it a demandable choice of application in automotive and other industrial components. This paper aims to study the most significant process parameter of FDM technique for different infill density of 25%, 50%, 75%, and 100% at various sliding load condition and sliding distance on wear and friction characteristics of PETG and CFPETG under annealed condition was investigated via dry sliding tribometer apparatus. The trials were done by applying the load of 10N, 20N, 30N, 40N, with a sliding distance of 1000m, 2000m for the time period of 10 min at room temperature and responses such as wear rate and coefficient of friction were recorded for further analysis.
Technical Paper

Experimental Studies on Weldability of Oil Hardening Non Shrinking Die Steel

2020-09-25
2020-28-0424
The Oil Hardening Non Shrinking (OHNS) die steel refers to a variety of carbon and alloy steels that are particularly well-suited for making tools. Though these steels are weldable, there is risk of crack formation. But, this can be avoided with convinced specifications like pre heating, proper choice of electrode etc., In the present work, OHNS die steel is welded with three different electrodes. The chosen electrodes were mild steel electrode, E312-16 chromium based electrode and E-NiCrFe-3 nickel based electrode. The OHNS steel is welded with these three electrodes and the welded specimens were examined for hot cracking tendency and mechanical properties of the joint. The hot cracking tendency was assessed by Houldcroft’s weldability test (Fishbone test). All the three electrodes proved the good results in terms of hot crack resistance and the specimen welded with E312-16 chromium based electrode provides good mechanical properties.
Technical Paper

Design and Analysis of Hybrid Composite Brake Disc with Various Grooves

2020-09-25
2020-28-0503
The enormous need of effective transportation creates an unavoidable situation in automobile industries to improve and maintain safety systems in vehicles. In crisis, brake disc of the braking system plays a vital role in effective braking of the vehicle. The main objective of this proposed study is to design a disc with two different groove patterns and a material with two different compositions. By using solidworks, a brake disc with proper slots and groove pattern (J hook and square groove) was designed for improved bite, debris, clearance, reduced distortion / vibration and effective heat transfer through convection process. In which two different materials namely zinc based Aluminium Alloy (AA8011) and its composite (AA8011 (5 wt% B4C +3 wt% Gr)) are considered after heat treatment (T6) as disc materials. The properties are measured and given as input data set in ansys workbench for further processing.
Technical Paper

Design and Analysis of Steering Knuckle at Diverse Strengthening Condition

2020-09-25
2020-28-0501
The steering knuckle is an essential component in All-Terrain Vehicle (ATV) which withstands alternating loads subjected to different conditions without affecting the vehicle performance. The main objective of the proposed work was to design and analysis the steering knuckle under static conditions to observe stress, total deformation and factor of safety for proposed materials. In this present investigation, Aluminium alloy (AA7075) was chosen as it exhibits good ductility, high strength, toughness and high resistance to withstand impact load. The prime objective of this work was processed under three different conditions like virgin AA7075, AA7075 with T6 heat treatment and AA7075 with T6 heat treatment followed by shot-peening post processed technique was completed and to attain diverse strength of the samples were tested and noted appropriate responses. The secondary objective of our proposed work, an optimum knuckle design was modeled using Solidworks.
Technical Paper

Appraisal of Tribo Meter Study on 20MnCr5 Alloy Steel under Case Hardened and Shot Peened Condition

2019-10-11
2019-28-0098
This research is limited to study the strength and wear resistance of 20MnCr5 (SAE 5120) alloy steel under monolithic, case hardened and case hardened with shot peening processing condition. Improve the hardness of the material by enhancing the core and surface strength of case hardened with the shot peened sample. The main objective of this proposed work is to conduct the tribometer test by varying the load of 10, 20, 30 and 40N and sliding speed of 193, 386 rpm respectively on wear rate and coefficient of friction be calculated and recorded for this study. Less wear rate and nominal coefficient of friction were observed for case hardened with the shot peened sample. Load increases wear rate increases and the coefficient of friction decreases when sliding distance increases wear rate decreases and the coefficient of friction increases for all the tested samples due to oxide layer formation.
Technical Paper

Design and Analysis of Hybrid Metal Matrix Composite Connecting Rod via Stir/Squeeze Casting Route

2019-10-11
2019-28-0113
The connecting rod was manufactured by forging process for enhancing high tensile and compressive load so that it was followed by the machining process and suite the IC engine as a part of the component. The main intern of our proposed work is to manufacture a two set of composites specimen of A356 alloy with reinforcement of 5 wt.% silicon carbide and 10 wt.% flyash processed through two different techniques like stir casting and stir cum squeeze casting route and obtain better mechanical properties. Further, the same properties were taken for modeling and analysing of the developed connecting rod model. Due to the commercial demand, the hybrid composite materials take a vigorous role in the analysis part of the connecting rod model. The FEA analysis is done on the connecting rod for a180cc engine by using Ansys 18.1. The static analysis is done by considering four different cases by altering material library property.
Technical Paper

Investigation of Dry Sliding Wear Behavior of AA8011 Reinforced with Zirconium Oxide and Aluminium Oxide Hybrid Composites Processed through Multi-Direction Forging

2019-10-11
2019-28-0057
The Cardinal goal of this research work is to fabricate hybrid composites of AA8011 with reinforcement particles of Zr2O3 and Al2O3 which was taken in equal (5wt%) weight percentage. The hybrid composites were cast in a square shape (50x50x50 mm size) under the optimal stir casted process parametric condition, further, it was taken for the forging process. The prepared specimens were induced for uni-direction (x), bi-direction (x and y) and multi-direction (x,y, and z) forging route and the response of microhardness of 53, 68, 81 and 96 VHN were obtained respectively due to microstructural phase changes with an even distribution of particles in the matrix. Thus, the tribological properties of prepared specimens were tested using pin-on-disc Tribometer at room temperature under dry sliding condition of load 5,10,15,20 N and by adjusting the sliding speed as 266 and 531 rpm respectively.
Technical Paper

Design and Analysis of De-Lavel Restrictor with Throttle Body for Formula Vehicle

2019-10-11
2019-28-0009
The restrictor is a component which controls the mass flow of air passing to the engine. The proposed work focuses on design and analysis of air intake restrictor of Duke 390cc engine which is used in formula vehicles. As an constrain of this system, the air flows through a single circular throat of diameter 20mm. In past decades conventional venture nozzles were used as a restrictor but it leads to nominal press drop. A de lavel nozzle is a tube pinched in the middle, making an asymmetric hourglass shape. It is used to accelerate a higher supersonic speed in the axial direction. The main objective is to utilize De-Laval Nozzle for the minimal pressure drop. The change in pressure will increases the engine power output. The analysis is done by varying design conditions such as three levels of convergent (12,14 and 16 degrees) and three levels of divergent angles (4, 6 and 8 degrees) are taken into consideration.
X