Refine Your Search

Topic

Author

Search Results

Technical Paper

An Integrated Approach Using Multi-Body Dynamics Simulation & Driving Simulator towards Chassis Development for an SUV Vehicle

2024-01-16
2024-26-0050
Driving dynamics performance is one of the key customer attributes to be developed during product development. In the vehicle development process, freezing the hardware of the chassis aggregates is one of the major priorities to kick off the other vehicle development activities. The current work involves the development of a multilink suspension for an SUV class vehicle. Typically, each OEM performs several product development loops for maturing the vehicle design. The driving dynamics performance evaluation and tuning happens on a physical vehicle with the driver in Loop. Tuning of suspension parameter on the physical vehicle entails actual replacement of parts/components. This encompasses multiple tuning cycles in product development associated with increased cost and test time. To reduce the product development time and cost while delivering first time right chassis configuration, we took an approach of getting driver-in-loop through driving simulator in the concept phase.
Technical Paper

Methods to Enhance Vehicle Handling by Improving Steering on Centre Feel and Return Ability in Commercial Vehicles Equipped with Hydraulic Assisted Steering System

2024-01-16
2024-26-0052
With rapid improvement in the road infrastructure the average turnaround time of the cargo vehicles has been reduced by 25%.New generation commercial vehicles has better power to weight ratio by integrating high horse power engines. With this latest vehicle configuration average speed of fleet is increased by 30% and more focus is provided towards vehicle safety and handling. Driver confidence on vehicle handling improves with better on Centre feel and return ability, these two parameters are easily tunable with modern electric power assisted steering system, whereas with hydraulic power assisted system these parameters optimization have adverse effect on other steering performance. This paper covers study of following parameters of hydraulic assisted steering system and its optimization on vehicle handling. 1. Steering Gearbox torsion bar stiffness 2. Steering pump flow 3. Caster angle 4. Steering Gearbox valve curve 5.
Technical Paper

Adopting Pothole Mitigation System for Improved Ride, Handling and Enhanced Component Life

2024-01-16
2024-26-0059
Potholes are a major cause of discomfort for riders and vehicle damage. The passive suspension systems which are used in the passenger vehicles are primarily reaction based. These can’t adapt to the changing road conditions which means the best ride quality and handling characteristics cannot be ensured for different driving situations. Passive suspension system also needs more maintenance due to its inability to reduce the impact of the road irregularities. In recent years, semi-active suspension systems have been developed to improve ride comfort and vehicle safety. This paper covers the integration of a semi-active suspension system with a road preview mechanism with a TATA car model to investigate its impact on ride comfort, handling characteristics and component loads in digital domain. A quarter car vehicle model is used to compare different active damping control strategies.
Technical Paper

Comprehensive Assessment of Driver Monitoring System for Commercial Vehicle Applications Using Innovative Lab Testing Approach

2024-01-16
2024-26-0027
The commercial vehicle sector (especially trucks) has major role in economic growth of a nation. With improving infrastructure, increasing number of commercial vehicles and growing amount of Vulnerable Road Users (VRUs) on roads, accidents are also increasing. As per RASSI (Road Accident Sampling System India) FY2016-21 database, commercial vehicles are involved in 43% of total accidents on Indian roads. One of the major causes of these accidents is Driver Drowsiness and Inattention (DDI) (approx. 10% contribution in total accidents). This paper describes novel driver-in-loop performance assessment methodology for comprehensive verification of Driver Monitoring System (DMS) for commercial vehicle application. Novelty lies in specification of test subjects, driving styles and variety of road traffic scenarios for verification of DMS system. Test setup is made modular to cater to different platform environments (Heavy, Intermediate, Light) with minor modifications.
Technical Paper

Cost Effective Techniques for SCEV to Improve Performance & Life of Battery and Motor by Using Efficient Thermal Systems

2024-01-16
2024-26-0275
The automotive world is moving towards electric powertrain systems. The electric powertrain systems have emerged as a promising alternative to the conventional powertrain system. The performance of electric vehicle is highly dependent on operating temperature of electric and electronic components of the vehicle. All power electronics and electric components in EV generate heat during operation and it must be removed to prevent overheating of components. Higher temperatures raise safety concerns whereas lower temperatures deteriorate the performance of power electronics & electric components. These power electronics & electrical components perform efficiently and safely if operated within certain temperature range. This paper presents an advanced efficient cost-effective thermal technique for small commercial electric vehicle (SCEV) to improve the performance & life of major electric components.
Technical Paper

New Generation Front Axle for EV and FCEV Buses

2024-01-16
2024-26-0321
Front axle is one of the major load-carrying members of Heavy Commercial Buses. With the conversion of the Power train from ICE to Battery electric vehicle, there is a marginal increase in front axle weight due to the Electric and Fuel Cell Electric vehicle architecture. This paper describes various methodologies deployed in front axle design to enhance the Axle durability performance, improve vehicle handling, and lower the total cost of ownership. A Lightweight heavy-duty front axle beam has been designed and validated, digitally and at test bench level for a 12m long low floor EV and FCEV Bus used for mass transportation. Also, major components like stub axle, hub, steering arm, tie rod arm, and tie rod assembly are analyzed for strength, durability, fatigue life, and joint analysis. Fatigue behavior is evaluated in differently manufactured components. Also, the strength of the axle beam is compared for different cross sections for weight optimization and durability improvement.
Technical Paper

ORVM Based Cabin Thermal Comfort - A Technological Approach

2023-09-14
2023-28-0042
Enriched ventilation and driver assistance systems which plays vital role in human thermal comfort and safety, are now necessities for the whole automotive sector. For faster cabin thermal comfort, air circulation around occupant’s body reveals higher cabin comfort index. In India natural and forced ventilation system is predominantly used in commercial vehicles as an economical solution for achieving interim cabin comfort over air conditioning system. Presently used forced ventilation system consist of electrically driven blower motor to remove stale air around human body which is adding alternator load and thus affects fuel economy. Remarkably, 22% of such auxiliary electrical load is taken by electrical components from engine generated power. In order to enhance cabin thermal comfort and conceivably reduce power usage, an effective air flow control system is need of hour.
Technical Paper

Implementation of IR Cut and Solar Green Glass to Optimize the Heat Load for Air Conditioning in Electric Buses

2023-09-14
2023-28-0006
Commercial electric vehicle air conditioning system keeps occupants comfortable, but at the expense of the energy used from the battery of vehicle. Passengers around the world are increasingly requesting buses with HVAC/AC capabilities. There is a need to optimise current air conditioning systems taking into account packaging, cost, and performance limits due to the rising demand for cooling and heating globally. Major elements contributing to heat ingress are traction motor, front firewall, windshield & side glasses and bus body parts. These elements contribute to the bus’s poor cooling and lack of passenger comfort. This topic refers to the reduction of the heat ingress through usage of different glass technology like IR Cut & solar green glass with different types of coating.
Technical Paper

Electro-Thermal Simulation Methodology for Battery Thermal Management System (BTMS) Performance Evaluation of Li-Ion Battery Electric Vehicles

2023-09-14
2023-28-0005
In the recent years, Hybrid and Electric Vehicles (EVs) have gained attention globally due to conventional non-renewable fuels becoming expensive and increasing pollution levels in the environment. Li-ion battery EV’s are most popular because of their better power density, spe. energy density and thermal stability. With the advent of battery EV’s, concerns regarding thermal safety of vehicle and its occupants has grown among the prospective customers. Temperature plays an important role in the performance of the Li-ion battery which includes cell capacity, charge output, vehicle range, mechanical life of the battery etc. For Li-ion cells, optimum operating range should be between 15-35 °C [1], and all cells must also be maintained within a ±5 °C variation band. Computational Fluid Dynamics (CFD) simulation can be used to get better insight of cell temperature inside battery. But CFD simulation process is complex, time consuming involving multi-physics and exhaustive computations.
Technical Paper

Development of Compact Battery Cooling System with Smart Diagnosis & Troubleshooting Tool for Small Commercial Vehicle

2023-09-14
2023-28-0028
Battery cooling system plays a vital role in all kind of Electric vehicles. For Indian applications where vehicles will be subjected to slower speeds due to heavy traffic, higher ambient conditions and excess loading pattern in commercial vehicles, designing a Battery cooling system (BCS) is a challenging task. There are various options for cooling of battery i.e. Natural air cooled, forced air cooled, indirect cooling. This paper discusses about indirect coolant based cooling of battery of a small commercial vehicle. Battery cooling system works on the principle of Indirect cooling with the combination of vapor compression cycle and water-coolant mixture path. R134a gas used for VCRS system and for cooling system used 50-50% water glycol coolant mixture. For this type of battery cooling system typically There are challenges of packaging of various battery cooling parts, hose routing, pipe bends which may result in de aeration issues.
Technical Paper

Improvement of AC System for Bus with Tropical/Hot Ambient Application

2023-09-14
2023-28-0016
AC system provides the human comfort inside the cabin of a vehicle but at the expense of consumption of energy from the vehicle. On a global perspective for the bus segment, there is an increased demand for cooling in tropical countries. Optimization needs to be done in existing AC systems w.r.t packaging, cost & performance constraints. Major elements contributing to heat ingress are engine hood, front firewall, windshield & side glasses and bus body parts. Due to these reasons inadequate passenger comfort and poor cool down performance of the vehicle is observed. This paper refers to the reduction of heat ingress through different DOE (Design of Experiment) in the area of design & validation for duct & vent layout, insulation, glass & paint technology, evaporator blowers. The new duct design has been evaluated using a CFD tool by varying various parameters to generate desired output. The integrated use of the modifications was found significant improvement at vehicle level.
Technical Paper

Impact Analysis of an Alternate Environment Friendly Refrigerant Deployed in the Air Conditioning System of IC Engine and Electric Vehicles

2023-09-14
2023-28-0038
Today, most vehicles in developing countries are equipped with air conditioning systems that work with Hydro-Fluoro-Carbons (HFC) based refrigerants. These refrigerants are potential greenhouse gases with a high global warming potential (GWP) that adversely impact the environment. Without the rapid phasedown of HFCs under the Kigali Amendment to the Montreal Protocol and other actions, Earth will soon pass climate tipping points that will be irreversible within human time dimensions. Up to half of national HFC use and emissions are for the manufacture and service of mobile air conditioning (MAC). Vehicle manufacturers supplying markets in non-Article 5 Parties have transitioned from HFC-134a (ozone-safe, GWP = 1400; TFA emissions) to Hydro-Fluoro-Olefin, HFO-1234yf (ozone-safe, GWP < 1; TFA emissions) due to comparable thermodynamic properties. However, the transition towards the phasing down of HFCs across all sectors is just beginning for Article 5 markets.
Technical Paper

Characterization of TiN Precipitates and It’s Morphology in Spring Steel for Commercial Vehicle Leaf Spring Suspension

2023-05-25
2023-28-1317
Leaf springs are used for vehicle suspension to support the load. These springs are made of flat sections of spring steel in single or in stack of multiple layers, held together in bracketed assembly. The key characteristics of leaf spring are defined as ability to distribute stresses along its length and transmit a load over the width of the chassis structures. The most common leaf spring steels are carbon steels alloyed with Cr and micro-alloyed with Ti, V and Nb. The specific thermomechanical process and alloying elements result in specific strength and fatigue properties for spring steels. The unique properties which facilitate use of spring steel in leaf spring suspensions are ability to withstand considerable twisting or bending forces without any distortion. The microstructure of these steel determines the performance and reflects the process of steel manufacturing. The performance is mainly determined by evaluating fatigue life durability.
Technical Paper

Methodology to Deduce the Testing Requirement of Twist Beam by Numerical Comparison of Roll Travel

2023-04-11
2023-01-0643
Twist-beam suspensions are an example of design solution presenting acceptable performance when applied to passenger cars & light vehicles and it can provide an optimal between cost & performance in the automotive market. For these reasons, twist beam is quite popular in use in rear suspension of light vehicles. In contrary to other types of suspension, the twist-beam has a flexible torsion beam connecting the swing arms. The study of the deformation of this flexible element becomes important to understand its performance and durability behavior. As the name signifies, twist beam major performance attribute is control of twist or opposite wheel travel arising from vehicle roll or road input. Current approach for the study this deformation is through FEA & Multi-body dynamics software tools.
Technical Paper

Effect of Normalizing Heat Treatment on Material and Mechanical Properties of High Strength Steel Tube for Lift axle of Commercial Vehicles

2022-10-05
2022-28-0351
Lift axles of heavy commercial vehicles are deployed to handle increased payload. These axles of Commercial vehicles are made of low alloy carbon steel materials. Lift axles are designed in hollow condition for weight reduction opportunity. Two types of tube materials are used for the manufacturing of lift axles. These are either Cold Drawn Seamless (CDS) tubes or Hot Finished Seamless (HFS) tube material. The vanadium micro-alloyed steel grade, 20MnV6 is an excellent choice for the manufacturing of lift axles. The 20MnV6 has favorable mechanical properties for lift axles and also offers good weldability. However, lift axles made of 20MnV6 when manufactured in hot-finished condition, shows significant scatter in terms of durability performance. This requires further heat treatment of 20MnV6 to be deployed for reducing the scatter in the material properties to reduce scatter in durability performance and thus increasing the reliability of the lift axles.
Technical Paper

Study of Key Attributes of Sustainability of Automobile Solutions in India

2022-10-05
2022-28-0313
The changing mobility landscape of India reveals that the erstwhile transport modes of the 20th century i.e., railways and road buses are making way for airlines, personal vehicles, shared mobility, metro rails. Rapid technological changes, stricter regulations, new transport cultures autonomous, connected, electric and shared (ACES), state-of-the-art and environmental concerns are shaping up the eco-system for automobiles. Despite these challenges roadways and automobiles will continue to be most prominent solution in India for future. But for that, the automobile sector should be agile, innovative, and adaptable to changing eco-system, vigilant to thwart threat of alternate mobility solutions and must provide sustainable solutions for the future. The purpose of this paper to evaluate various mobility solutions, ascertain prominence of upcoming automobile solutions and their sustainability for future in India.
Technical Paper

Empirical Investigation of Various Mobility Solutions for Urban Transport Planning: A Study from Western India

2022-10-05
2022-28-0314
Transportation has significant and long-lasting economic, social and environmental impacts which makes it an important dimension of urban sustainability. The World is witnessing rapid changes in modern traveling behavior, and efforts are continuously being made to stimulate sustainable mobility solutions with smart policies, new business models, and advanced technologies (connected cars, sensors, electrification). However, the shift is gradual in India when compared to developed countries due to unique barriers to emerging green mobility solutions. This paper empirically investigates public travel satisfaction and the primary factors for the selection of modes for different types of commutes. Quantitative data were collected including socio-demographic, travel mode choices, and preferred future mobility solutions from the western states of India.
Technical Paper

Design and Development of Lightweight Pivot Arm Using Austempered Ductile Iron (ADI) for Heavy Commercial Vehicles

2021-09-22
2021-26-0255
In a current competitive automotive market, weight and cost optimization is the need of an hour. Therefore it is important to explore use of alternative material which has less weight, low manufacturing cost and better strength. This paper presents methodology to achieve cost & weight reduction through use of Austempered Ductile Iron (ADI) instead of alloy forging. ADI casting has lower density, physical properties at par with alloy forgings and lower manufacturing cost. Pivot arm is the one of the critical component of twin axle steering system which transfers the hydraulic torque from steering gearbox to second forward axle via linkage system. In order to design lightweight pivot arm, existing chromium alloy steel material is replaced with the Austempered ductile iron (ADI). Pivot arm is designed and validated digitally as well as bench test and results are found to be meeting cost and weight targets.
Technical Paper

Machine Learning based Operation Strategy for EV Vacuum Pump

2021-09-22
2021-26-0139
In an automotive braking system, Vacuum pump is used to generate vacuum in the vacuum servo or brake booster in order to enhance the safety and comfort to the driver. The vacuum pump operation in the braking system varies from conventional to electric vehicles. The vacuum pump is connected to the alternator shaft or CAM shaft in a conventional vehicle, operates continuously at engine speed and supplies continuous vacuum to the brake servo irrespective of vacuum requirement. To sustain continuous operation, these vacuum pumps are generally oil cooled. Whereas in electric vehicles, the use of a motor-driven vacuum pump is very much needed for vacuum generation as there is no engine present. Thus, with the assistance of an electronic control unit (ECU), the vacuum pump can be operated only when needed saving a significant amount of energy contributing to fuel economy and range improvement and emission reduction.
Technical Paper

1D Modelling of Fuel Cell Losses Including the Water and Thermal Management

2021-09-22
2021-26-0225
Fuel cells plays significant role in the automotive sector to substitute the fossil fuels and complement to electric vehicles. In the fuel cell vehicles fuel cell stack is major component. It is important to have a robust fuel cell model that can simulate the behaviour of the fuel cell stack under various operating conditions in order to study the functioning of a fuel cell and optimize its operating parameters and achieve the best efficiency in operation. The operating voltage of the fuel cell at different current densities depends upon thermodynamic parameters like temperature and pressure of the reactants as well factors like the state of humidification of the electrolyte membrane. A 1D model is developed to capture the variation in voltage at different current densities due to internal losses and changes to operating conditions like temperature and pressure.
X