Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Technical Paper

Optimized Variable Gear Ratio Steering System with Reduced EPAS Motor Size Achieving Performance Targets

2022-03-29
2022-01-0874
In electric power assisted steering system (EPAS), the steering assistance torque is provided by the electric motor. The motor rating is decided based on rack force requirement which depends on the vehicle weight, steering gear ratio, wheel angles etc. The load on the EPAS motor varies with respect to the steered angles of the road wheels. The motor experiences higher load towards the road wheel lock position. Most of the steering systems used on passenger cars has rack and pinion gear with constant gear ratio (C-factor). The constant gear ratio is decided to create right balance between vehicle handling behavior and steering effort. The constant gear ratio exerts higher steering load which the EPAS motor is required to support up to road wheel lock angles and hence EPAS motor size increases. This paper presents variable gear ratio (VGR) steering system in which gear ratio varies from center towards end lock stroke of rack & pinion.
Journal Article

1D Mathematical Model Development for Prediction and Mitigation of Vehicle Pull Considering Suspension Asymmetry and Tire Parameters

2021-09-22
2021-26-0502
Error in suspension asymmetry or tire parameters may lead to vehicle drifting laterally from its intended straight-line path, which is called vehicle pull. Driver then needs to apply constant steering correction to maintain the vehicle in straight line which will lead to high driver fatigue and deteriorate driving experience. Manufacturing a perfectly symmetric suspension system is impractical, however an insight into the manufacturing tolerances of suspension system at the early design stage can be extremely useful. Also tire force and moment parameters at straight line operation and its maximum allowable variations will help in defining the tire parameter specifications and tolerances. The objective of this study was to develop a 1D model of suspension and tire system which can predict the torque experienced in steering and drift of the vehicle from straight line due to the tire force and moment and asymmetric suspension geometry.
Technical Paper

Advanced BEV Battery Pack Thermal Simulation Model Development & Co-relation with Physical Testing

2021-09-15
2021-28-0138
Battery Thermal management is a major challenge for occupant safety in an electric vehicle. Predicting the battery electrical losses and thermal behaviour is another challenge for the battery management system. Different virtual models are developed for cell level and pack level thermal evaluation. All these models have a varying degree of accuracy and limitation. The latest developed model is more accurate and can predict the battery cell & pack level temperatures. The battery can be modeled in different ways, ECM (Electrochemical model), EIS (Electrochemical Impedance Spectroscopy) [1]. Newman model is a well-known electrochemical model. [2]. EIS uses a combination of DC and small AC signal [3,4]. ECM model also used for estimating SOC and in BMS [5]. The cell temperature in the battery pack not only depends upon the cell inside physics but also depends upon cell outside cooling physics. Cell outside physics is simulated by 3D CFD software during the design process [6].
Technical Paper

Optimizing Steering Column Layout and UJ Phase Angle to Enhance Vehicle Dynamics Performance

2019-02-05
2019-01-5010
Vehicle dynamics is one of the most important vehicle attributes. It is classified into three domains, the longitudinal, vertical, and lateral dynamics. This paper focuses on optimizing the lateral vehicle dynamics which is driven by the straight ahead controllability and cornering controllability of the vehicle. One of the important parameters that dictates these sub-attributes is the steering ratio. Therefore, designing the right steering ratio is critical to meet the vehicle “specific” targets. Significant amount of work has been done by many researchers on variable steering ratio by implementing variable gear ratio (VGR) rack, active steering, and steer-by-wire systems. This paper discusses the methodology and considerations to optimize the steering ratio for a constant gear ratio rack by optimizing the steering column layout, viz., orientation and the phase angle in universal joints.
Technical Paper

An Engine Stop Start System with Driver Behavior Learning and Adaption for Improving the User Experience

2018-04-03
2018-01-0609
Engine Stop/Start System (ESS) promises to reduce greenhouse emissions and improve fuel economy of vehicles. Previous work of the Authors was concentrated on bridging the gap of improvement in fuel economy promised by ESS under standard laboratory conditions and actual driving conditions. Findings from the practical studies lead to a conclusion that ESS is not so popular among the customers, due to the complexities of the system operation and poor integration of the system design with the driver behavior. In addition, due to various functional safety requirements, and traffic conditions, actual benefits of ESS are reduced. A modified control algorithm was proposed and proven for the local driving conditions in India. The ways in which a given driver behaves on the controls of the vehicles like Clutch and Brake Pedals, Gear Shift Lever were not uniform across the demography of study and varied significantly.
Technical Paper

Common Automobile Program to Improve Mass Transportation

2016-04-05
2016-01-0154
This paper describes the Common Automobile Program (CAP) that can be implemented to improve mass transportation. CAP is the use of automated electric vehicles using smart navigation and control technologies to improve mass transportation. In CAP, common vehicles are used by different passengers, thus, reducing the on-road traffic and also the parking space required. Various low-cost stations are to be built along specified paths and the vehicle can be used at the convenience of the commuter. Currently, buses and trains require the passengers to wait at the station and a significant amount of time is spent at intermediate stops. The vehicle in CAP runs directly from origin to destination and also eliminates the waiting time at stations. Passengers do not wait for vehicles; instead vehicles wait for the passengers. The journey starts as the passenger enters the station and selects the destination.
Technical Paper

Air Compressor Duty Cycle Reduction in Passenger Bus Application

2015-04-14
2015-01-0139
Today urban buses are equipped with more air consuming devices for an example pneumatic doors, exhaust brake, air suspension and in SCR system to name a few. This has resulted in higher air demand leading to high compressor duty cycles which cause conditions (such as higher compressor head temperatures) that may adversely affect air brake charging system performance. These conditions may require additional maintenance due to a higher amount of oil vapor droplets being passed along into the air brake system. Factors that add to the duty cycle are air suspension, additional air accessories, use of an undersized compressor, frequent stops, excessive air leakage from fittings, connections, lines, chambers or valves, etc. This paper discussed about methodology used to reduce air consumption of air consuming devices used in urban bus application. Performance assessment of air consuming devices with minimum available air pressure was conducted and found satisfactory.
Technical Paper

Mathematical Model to Evaluate and Optimize the Dynamic Performance of Pneumatic Brake System

2015-01-14
2015-26-0082
Pneumatic brake system is widely used in heavy truck, medium and heavy buses for its great superiority and braking performance over other brake systems. Pneumatic brake system consists of various valves such as Dual Brake Valve (DBV), Quick release Valve (QRV), Relay Valve (RV), Brake chambers. Dynamics of each valve is playing a crucial role in overall dynamic performance of the braking system. However, it is very difficult to find the contribution of each valve and pipe diameters in overall braking performance. Hence, it is very difficult to arrive a best combination for targeted braking performance as it is not possible to evaluate all combination on the actual vehicle. Hence, it is very important to have a mathematical model to optimize and evaluate the overall braking performance in early design phase. The present study is focusing on the mathematical model of a pneumatic brake circuit.
Technical Paper

A Novel Approach for Diagnostics, End of Line and System Performance Checks for Micro Hybrid Battery Management Systems

2014-04-01
2014-01-0291
Micro Hybrid Systems are a premier approach for improving fuel efficiency and reducing emissions, by improving the efficiency of electrical energy generation, storage, distribution and consumption, yet with lower costs associated with development and implementation. However, significant efforts are required while implementing micro hybrid systems, arising out of components like Intelligent Battery Sensor (IBS). IBS provides battery measurements and battery status, and in addition mission critical diagnostic data on a communication line to micro hybrid controller. However, this set of data from IBS is not available instantly after its initialization, as it enters into a lengthy learning phase, where it learns the battery parameters, before it gives the required data on the communication line. This learning period spans from 3 to 8 hours, until the IBS is fully functional and is capable of supporting the system functionalities.
Technical Paper

Ultra-Capacitor based Hybrid Energy Storage and Energy Management for Mild Hybrid Vehicles

2014-04-01
2014-01-1882
In a Mild hybrid electric vehicle, a battery serves as a continuous source of energy but is inefficient in supplying peak power demands required during torque assists for short duration. Moreover, the random charging and discharging that result due to varying drive cycle of the vehicle affects the life of the battery. In this paper, an Ultra-capacitor based hybrid energy storage system (HESS) has been developed for mild hybrid vehicle which aims at utilizing the advantages of ultracapacitors by combining them with lead-acid batteries, to improve the overall performance of the battery, and to increase their useful life. Active current-sharing is achieved by interfacing ultracapacitor to the battery through a bi-directional boost dc-dc converter.
Technical Paper

Evaluation of Cabin Comfort in Air Conditioned Buses Using CFD

2014-04-01
2014-01-0699
The objective of the work presented in this paper is to provide an overall CFD evaluation and optimization study of cabin climate control of air-conditioned (AC) city buses. Providing passengers with a comfortable experience is one of the focal point of any bus manufacturer. However, detailed evaluation through testing alone is difficult and not possible during vehicle development. With increasing travel needs and continuous focus on improving passenger experience, CFD supplemented by testing plays an important role in assessing the cabin comfort. The focus of the study is to evaluate the effect of size, shape and number of free-flow and overhead vents on flow distribution inside the cabin. Numerical simulations were carried out using a commercially available CFD code, Fluent®. Realizable k - ε RANS turbulence model was used to model turbulence. Airflow results from numerical simulation were compared with the testing results to evaluate the reliability.
Journal Article

Body Induced Boom Noise Control by Hybrid Integrated Approach for a Passenger Car

2013-05-13
2013-01-1920
Vehicle incab booming perception, a low frequency response of the structure to the various excitations presents a challenging task for the NVH engineers. The excitation to the structure causing boom can either be power train induced, depending upon the number of cylinders or the road inputs, while transfer paths for the excitation is mainly through the power train mounts or the suspension attachments to the body. The body responds to those input excitations by virtue of the dynamic behavior mainly governed by its modal characteristics. This paper explains in detail an integrated approach, of both experimental and numerical techniques devised to investigate the mechanism for boom noise generation. It is therefore important, to understand the modal behavior of the structure. The modal characteristics from the structural modal test enable to locate the natural frequencies and mode shapes of the body, which are likely to get excited due to the operating excitations.
Technical Paper

Virtual Development of Optimum Twist Beam Design Configuration for a New Generation Passenger Car

2007-08-05
2007-01-3562
It is customary to select a twist beam rear suspension for front wheel driven small and medium range passenger cars. Besides better primary / secondary ride comfort, roll stiffness tuning ability, ease of assembly & good packaging solutions than the conventional semi trailing arm/ rigid axle suspensions, twist beam suspension system accentuate the concentration required in placing & orienting the cross beam to achieve certain imperative kinematical characteristics. In order to make the solutions of the required kinematical targets viable, it is vital to have the packaging space and stress concentration within yield limits given the weight & cost targets. This paper presents the work done on twist beam type suspension for a new generation entry level B-Class hatchback vehicle developed. To reduce the time consumed in validation of different design proposals a virtual validation process was developed.
Technical Paper

FE Prediction of Thermal Performance and Stresses in a Disc Brake System

2006-10-31
2006-01-3558
The brake system is one of the most critical systems in the automotive vehicle. Its design is a challenging task since stringent performance and packaging requirements are to be fully met - optimizing the brake performance and weight of the brake system. The brake disc is an important component in the braking system which is expected to withstand and dissipate the heat generated during the braking event. Validation of brake disc design through CAE/FEA is presented in this paper. The procedure for prediction of thermal performance was developed in-house, tuned and verified by correlating with Test data available for existing-design and then applied to the new-design brake disc. The correlation achieved for the existing-design brake disc (both solid and ventilated), procedure for prediction of thermo-mechanical performance (heat transfer coefficient estimation, temperature distribution etc.) are also included.
X