Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Protection of Rear Seat Occupants in Frontal Crashes, Controlling for Occupant and Crash Characteristics

2009-11-02
2009-22-0003
In this study, the level of protection offered to rear seat occupants in frontal crashes is investigated. The Fatality Analysis Reporting System (FARS) and National Automotive Sampling System Crashworthiness Data System (NASS CDS) databases were used for the analyses. The investigation focused on: 1- estimating the fatality protection effectiveness of the rear seat position relative to the right front seat position, using the double paired comparison method, 2- evaluating the effect of control group selection method on effectiveness predictions, and 3- identifying trends in rear seat occupant protection over model years of vehicles. By applying a uniform control group to the double paired comparison analysis of FARS data, this study suggests that all ages of occupants are safer in the rear seat than in the right front seat. Effectiveness estimates ranged from 5.9% to 82% for different age groups of occupants.
Technical Paper

Injury Mechanism of the Head and Face of Children in Side Impacts

2009-04-20
2009-01-1434
This study assessed the primary involved physical components attributed to the head and face injuries of child occupants seated directly adjacent to the stuck side of a vehicle in a side impact collision. The findings presented in this study were based upon analysis of the National Automotive Sampling System/Crashworthiness Data System (NASS/CDS) for the years 1993–2007. Injury analysis was conducted for those nearside child occupants aged between 1–12 years-old. The involved children were classified as toddler-type, booster-type, or belted-type occupants. These classifications were based upon the recommended restraint system for the occupant. Injury mechanisms were assessed for the child occupants in each of the three groups. A detailed study of NASS/CDS cases was conducted to provide a greater understanding of the associated injury mechanisms.
Technical Paper

Mechanisms of Traumatic Rupture of the Aorta and Associated Peri-isthmic Motion and Deformation

2008-11-03
2008-22-0010
This study investigated the mechanisms of traumatic rupture of the aorta (TRA). Eight unembalmed human cadavers were tested using various dynamic blunt loading modes. Impacts were conducted using a 32-kg impactor with a 152-mm face, and high-speed seatbelt pretensioners. High-speed biplane x-ray was used to visualize aortic motion within the mediastinum, and to measure deformation of the aorta. An axillary thoracotomy approach was used to access the peri-isthmic region to place radiopaque markers on the aorta. The cadavers were inverted for testing. Clinically relevant TRA was observed in seven of the tests. Peak average longitudinal Lagrange strain was 0.644, with the average peak for all tests being 0.208 ± 0.216. Peak intraluminal pressure of 165 kPa was recorded. Longitudinal stretch of the aorta was found to be a principal component of injury causation. Stretch of the aorta was generated by thoracic deformation, which is required for injury to occur.
Journal Article

A Study of the Rear Seat Occupant Safety using a 10-Year-Old Child Dummy in the New Car Assessment Program

2008-04-14
2008-01-0511
The National Highway Traffic Safety Administration (NHTSA) conducted a total of 28 frontal crashes in the New Car Assessment Program (NCAP) involving the 10-year-old child Hybrid III dummy. The 10-year-old child dummy was in the rear seat. All types of vehicles (passenger cars, sport utility vehicles, vans and pick-up trucks) were tested to assess the effect of restraint systems such as booster and pretensioner on the rear seat occupant. In this study, the readings of the 10-year-old child dummy in rear-left and rear-right seat positions are examined. The authors apply a possible 5 star rating system, based on head and chest readings of the 10-year-old dummy. The paper also assesses the safety performance of rear seat occupants and the effect of the restraint systems on a child in the rear seat. This paper suggests that a star rating for rear seat occupants is independent of the present ratings for the driver and front adult passenger in NCAP.
Technical Paper

A Study of the IIHS Frontal Pole Impact Test

2008-04-14
2008-01-0507
According to the Fatality Analysis Reporting System (FARS, 1995-2004), over 20 percent of fatal frontal crashes are into fixed narrow objects such as trees and utility poles in real world crashes. The Insurance Institute for Highway Safety (IIHS) has studied the frontal pole impact test since 2005, conducting a series of tests using passenger cars that are rated “Good” from the IIHS frontal offset test. Passenger cars were impacted into a 10-inch-diameter rigid pole at 64-kph. The alignment of the pole along the centerline of the vehicles in frontal impact was varied to study the influence on dummy injury metrics. This paper evaluates the frontal center pole test conducted by the IIHS. The IIHS tests 21 crashes impacted by the rigid pole using 5 vehicle models with two dummies in the front seat. Intrusions and dummy readings were reviewed according to the frontal offset rating criteria of the IIHS for structural performance and injury measurement.
Technical Paper

New Method of Vehicle Inspection for Incompatible Crashes

2007-04-16
2007-01-1184
This paper creates a worksheet to thoroughly document vehicle damage during an incompatible vehicle-to-vehicle frontal crash. This data form serves as a supplement to the current and already established NASS inspection forms. It will assist biomechanics research by determining the extent by which incompatibility caused or changed occupants' injuries through structural analysis of the vehicles. This study identifies deficiencies in the current NASS inspection system for compatibility, and develops new measurable parameters to document the crash and associate injury to it.
Technical Paper

Development of an Intelligent Multimode Speed Adaptation System

2007-04-16
2007-01-1321
According to National Highway Traffic Safety Administration (NHTSA) speed-related traffic fatalities accounted for 31% of total fatalities on U.S. roadways in 2003. Traditional speed control methods suffer from significant shortcomings. Adaptation (ISA) systems hold the promise of safer roadways through improving driver compliance with speed limits. This paper describes the development of a new multi-modal speed adaptation system to be tested in the CISR car-driving simulator. The system is capable of adapting to the driver's driving style and provides appropriate warning for over speeding based on the vehicle speed, speed limit, driver individual preferences, and risk factor. A hierarchical manager module determines the warning strategy. The adequate warning strategy is specific to driving situations and individual characteristics. Modes of warnings being considered include VISUAL, and HAPTIC.
Technical Paper

Study of Potential Mechanisms of Traumatic Rupture of the Aorta Using InSitu Experiments

2006-11-06
2006-22-0011
Traumatic rupture of the aorta (TRA) is an important transportation-related injury. This study investigated TRA mechanisms using in situ human cadaver experiments. Four quasi-static tests and one dynamic test were performed. The quasi-static experiments were conducted by perturbing the mediastinal structures of the cadavers. The mechanisms investigated included anterior, superior, and lateral displacement of the heart and aortic arch. The resulting injuries ranged from partial tears to complete transections. All injuries occurred within the peri-isthmic region. Intimal tears were associated with the primary injuries. The average failure load and stretch were 148 N and 30 percent for the quasi-static tests. This study illustrates that TRA can result from appropriate application of nominal levels of longitudinal load and tension. The results demonstrate that intraluminal pressure and whole-body acceleration are not required for TRA to occur.
Technical Paper

Occupant Injury Patterns in Side Crashes

2001-03-05
2001-01-0723
This paper presents an analysis of the National Automotive Sampling System (NASS) and the Fatal Accident Reporting Systems (FARS) data for the combined years 1988–97 with respect to side impacts. Accident variables, vehicle variables, occupant variables and their interactions have been considered, with special emphasis on occupant injury patterns. The crash modes considered are car-to-car, car-to-LTV (light trucks and vans) and car to narrow object, with special emphasis on the latter two. This study was undertaken to obtain a better understanding of injury patterns in lateral impacts, their associated causation factors, and to obtain information that will assist in prioritizing crash injury research problems in near side impacts. Of particular interest is the increase in the population of light trucks and vans and their influence on side impact priorities. Conclusions will be drawn regarding the frequency and injury severity of car-to-LTV’s and car to narrow objects.
Technical Paper

Effect of Occupant Position and Air Bag Inflation Parameters on Driver Injury Measures

1998-02-23
980637
This paper investigates the effects of driver airbag inflation characteristics, airbag relative position, airbag to dummy relative velocity, and steering column characteristics using a finite element model of a vehicle, air bag, and Hybrid III 50% male dummy. Simulation is conducted in a static test environment using a validated finite element model. Several static simulation tests are performed where the air bag module's position is mounted in a rigid steering wheel and the vertical and horizontal distances are varied relative to the dummy. Three vertical alignments are used: one position corresponds to the head centered on module, another position corresponds to the neck centered on module, and the third position centers the chest on the module. Horizontal alignments vary from 0 mm to 50 mm to 100 mm. All of these tests are simulated using a typical pre-1998 type inflation curve (mass flow rate of gas entering the bag).
X