Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Evaluation of Damping Material at Higher Frequencies with Application to Automotive Systems Including Brakes

1995-05-01
951243
Many discrete tonal type noise and vibration problems in automotive systems and other physical structures require passive multi-layer visco-elastic damping treatments in mid to high frequency regimes. To address such issues, experimental modal analysis and dynamic finite element methods are suggested as suitable tools. Results are presented in terms of several test structures (four thin elastic beams, a thick elastic plate and an automotive brake pad) with free-free boundary conditions. Composite modal loss factors are measured and predicted for two different damping insulators consisting of adhesive, steel and coating combinations. Special attention is paid to the elastic deformation modes of test structures and spectral scaling of material properties for the finite element models.
Technical Paper

Investigation of Shrink Flanging - Prediction of Wrinkling and Experimental Verification

1994-03-01
940939
Shrink flanging is a major sheet forming operation to produce convex flanges in structural sheet metal components. Flanges are used for appearance, rigidity, hidden joints, and strengthening of the edge of sheet parts such as automobile front fender and complex panels formed by stretch/draw forming. Wrinkling around the flange edge is the major defect in shrink flanging operation. There has been a lack of reliable mathematical modeling to predict the strains and wrinkles in shrink flanging operations. A trial-and-error approach has been usually practiced in tooling and process designs. In this paper, a wrinkling criterion in shrink flange is proposed based on a simplification from a general criterion for a doubly curved anisotropic shell. The mathematical model for strain analysis in shrink flanging is established based on Wang and Wenner's strain model for stretch flange. Shrink flanging experiments were conducted to validate the theories.
Technical Paper

Estimation and Control of Drawbead Forces in Sheet Metal Forming

1994-03-01
940941
In sheet metal forming, drawbeads are often used to control uneven material flow which may cause defects such as wrinkles, fractures, surface distortion and springback. Appropriate setting and adjusting the drawbead force is one of the most important parameters in sheet forming process control. However, drawbead design and drawbead force adjustment still rely on trial-and-error procedures. This paper summarizes the guidelines in drawbead design, evaluates a number of mathematical models in estimating drawbead forces, and investigates the effects of sheet thickness, material properties, drawbead geometry and penetration on the drawbead force.
Technical Paper

Improving Drawability by Using Variable Blank Holder Force and Pressure in Deep Drawing of Round and Non-Symmetric Parts

1993-03-01
930287
Predominant failure modes in the forming of sheet metal parts are wrinkling and tearing. Wrinkling may occur at the flange as well as in other areas of the drawn part and is generated by excessive compressive stresses that cause the sheet to buckle locally. Fracture occurs in a drawn material which is under excessive tensile stresses. For a given part and blank geometries, the major factors affecting the occurrence of defects in sheet metal parts are the blank holder force (BHF) and the blank holder pressure (BHP). These variables can be controlled to delay or completely eliminate wrinkling and fracture. Modern mechanical presses are equipped with hydraulic cushions and various advanced multi-point pressure control systems. Thus, the BHP can be adjusted over the periphery of the blank holder as a function of location and time (or press stroke).
Technical Paper

Process Simulation and Springback Control in Plane Strain Sheet Bending

1993-03-01
930280
Plane strain bending (e.g. bending about a straight line) is a major sheet forming operation and it is practiced as brake bending (air bending, U-die, V-die and wiping-die bending). Precise prediction of springback is the key to the design of the bending dies and to the control of the process and press brake to obtain close tolerances in bent parts. In this paper, reliable mathematical models for press brake bending are presented. These models can predict springback, bendability, strain and stress distributions, and the maximum loads on the punch and die. The elasto-plastic bending model incorporates the true (nonlinear) strain distribution across the sheet thickness, Swift's strain hardening law, Hill's 1979 nonquadratic yield criterion for normal anisotropic materials, and plane strain deformation mode.
Technical Paper

A Realistic Friction Test for Sheet Forming Operations

1993-03-01
930807
A new technique for measuring the friction coefficient between the punch and workpiece during sheet forming operations has been developed at the Ohio State University. Various materials, such as interstitial-free (IF) steel, high strength (HS) steel, an aluminum alloy (2008T4) and 70/30 brass, were tested under dry and oil lubrication conditions at different punch rates and process conditions. The results show that punch friction depends on the angle of wrap, which varies with punch stroke, and on the strain rate, which depends on punch velocity. The O.S.U. Friction Test is described and typical results are presented which verify the usefulness of the new procedure.
X