Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Parking Planning with Genetic Algorithm for Multiple Autonomous Vehicles

2022-03-29
2022-01-0087
The past decade has witnessed the rapid development of autonomous parking technology, since it has promising capacity to improve traffic efficiency and reduce the burden on drivers. However, it is prone to the trap of self-centeredness when each vehicle is automated parking in isolation. And it is easy to cause traffic congestion and even chaos when multiple autonomous vehicles require of parking into the same lot. In order to address the multiple vehicle parking problem, we propose a parking planning method with genetic algorithm. Firstly, an optimal mathematic model is established to describe the multiple autonomous vehicle parking problem. Secondly, a genetic algorithm is designed to solve the optimization problem. Thirdly, illustrative examples are developed to verify the parking planner. The performance of the present method indicates its competence in addressing parking multiple autonomous vehicles problem.
Technical Paper

A Steerable Curvature Approach for Efficient Executable Path Planning for on-Road Autonomous Vehicle

2019-04-02
2019-01-0675
A rapid path-planning algorithm that generates drivable paths for an autonomous vehicle operating in structural road is proposed in this paper. Cubic B-spline curve is adopted to generating smooth path for continuous curvature and, more, parametric basic points of the spline is adjusted to controlling the curvature extremum for kinematic constraints on vehicle. Other than previous approaches such as inverse kinematics, model-based prediction postprocess approach or closed-loop forward simulation, using the kinematics model in each iteration of path for smoothing and controlling curvature leading to time consumption increasing, our method characterized the vehicle curvature constraint by the minimum length of segment line, which synchronously realized constraint and smooth for generating path. And Differ from the path of robot escaping from a maze, the intelligent vehicle traveling on road in structured environments needs to meet the traffic rules.
Technical Paper

Speed Tracking Control for All-Terrain Vehicle Considering Road Slope and Saturation Constraint of Actuator

2017-09-23
2017-01-1953
In this paper, a speed tracking controller is designed for the All-terrain vehicles. The method of feedforward with state variable feedback based on conditional integrators is adopted by the proposed control algorithm. The feedforward is designed considering the influence of the road slope on the longitudinal dynamics, which makes the All-terrain vehicles satisfy the acceleration demand of the upper controller when it tracks the desired speed on the road with slope varying greatly. The road slope is estimated based on a combined kinematic and dynamic model. This method solves the problem that road slope estimation requires an accurate vehicle dynamic model and are susceptible to acceleration sensor bias. Based on the vehicle dynamic model and the nonlinear tire model, the method of conditional integration is used in the state variable feedback, which considers the saturation constraint of the actuator with the intention of preventing the divergent integral operation.
X