Refine Your Search

Topic

Search Results

Technical Paper

Braking Judder Test and Simulation Analysis of Commercial Vehicle

2024-04-09
2024-01-2342
Brake judder affects vehicle safety and comfort, making it a key area of research in brake NVH. Transfer path analysis is effective for analyzing and reducing brake judder. However, current studies mainly focus on passenger cars, with limited investigation into commercial vehicles. The complex chassis structures of commercial vehicles involve multiple transfer paths, resulting in extensive data and testing challenges. This hinders the analysis and suppression of brake judder using transfer path analysis. In this study, we propose a simulation-based method to investigate brake judder transfer paths in commercial vehicles. Firstly, road tests were conducted to investigate the brake judder of commercial vehicles. Time-domain analysis, order characteristics analysis, and transfer function analysis between components were performed.
Technical Paper

Analysis and Design of Suspension State Observer for Wheel Load Estimation

2024-04-09
2024-01-2285
Tire forces and moments play an important role in vehicle dynamics and safety. X-by-wire chassis components including active suspension, electronic powered steering, by-wire braking, etc can take the tire forces as inputs to improve vehicle’s dynamic performance. In order to measure the accurate dynamic wheel load, most of the researches focused on the kinematic parameters such as body longitudinal and lateral acceleration, load transfer and etc. In this paper, the authors focus on the suspension system, avoiding the dependence on accurate mass and aerodynamics model of the whole vehicle. The geometry of the suspension is equated by the spatial parallel mechanism model (RSSR model), which improves the calculation speed while ensuring the accuracy. A suspension force observer is created, which contains parameters including spring damper compression length, push rod force, knuckle accelerations, etc., combing the kinematic and dynamic characteristic of the vehicle.
Technical Paper

Performance Analysis of Fuel Cells for High Altitude Long Flight Multi-rotor Drones

2024-04-09
2024-01-2177
In recent years, the burgeoning applications of hydrogen fuel cells have ignited a growing trend in their integration within the transportation sector, with a particular focus on their potential use in multi-rotor drones. The heightened mass-based energy density of fuel cells positions them as promising alternatives to current lithium battery-powered drones, especially as the demand for extended flight durations increases. This article undertakes a comprehensive exploration, comparing the performance of lithium batteries against air-cooled fuel cells, specifically within the context of multi-rotor drones with a 3.5kW power requirement. The study reveals that, for the specified power demand, air-cooled fuel cells outperform lithium batteries, establishing them as a more efficient solution.
Technical Paper

Rapid assessment of power battery states for electric vehicles oriented to after-sales maintenance

2024-04-09
2024-01-2201
With the continuous popularization of electric vehicles (EVs), ensuring the best performance of EVs has become a significant concern, and lithium-ion power batteries are considered as the essential storage and conversion equipment for EVs. Therefore, it is of great significance to quickly evaluate the state of power batteries. This paper investigates a fast state estimation method of power batteries oriented to after-sales and maintenance. Based on the battery equivalent circuit model and heuristics optimization algorithm, the battery model parameters, including the internal ohmic and polarization resistance, can be identified using only 30 minutes of charging or discharging process data without full charge or discharge. At the same time, the proposed method can directly estimate the state of charge (SOC) and maximum available capacity of the battery without knowing initial SOC information.
Technical Paper

Revealing the Impact of Mechanical Pressure on Lithium-Ion Pouch Cell Formation and the Evolution of Pressure During the Formation Process

2024-04-09
2024-01-2192
The formation is a crucial step in the production process of lithium-ion batteries (LIBs), during which the solid electrolyte interphase (SEI) is formed on the surface of the anode particles to passivate the electrode. It determines the performance of the battery, including its capacity and lifetime. A meticulously designed formation protocol is essential to regulate and optimize the stability of the SEI, ultimately achieving the optimal performance of the battery. Current research on formation protocols in lithium-ion batteries primarily focuses on temperature, current, and voltage windows. However, there has been limited investigation into the influence of different initial pressures on the formation process, and the evolution of cell pressure during formation remains unclear. In this study, a pressure-assisted formation device for lithium-ion pouch cells is developed, equipped with pressure sensors.
Technical Paper

Combining Dynamic Movement Primitives and Artificial Potential Fields for Lane Change Obstacle Avoidance Trajectory Planning of Autonomous Vehicles

2024-04-09
2024-01-2567
Lane change obstacle avoidance is a common driving scenario for autonomous vehicles. However, existing methods for lane change obstacle avoidance in vehicles decouple path and velocity planning, neglecting the coupling relationship between the path and velocity. Additionally, these methods often do not sufficiently consider the lane change behaviors characteristic of human drivers. In response to these challenges, this paper innovatively applies the Dynamic Movement Primitives (DMPs) algorithm to vehicle trajectory planning and proposes a real-time trajectory planning method that integrates DMPs and Artificial Potential Fields (APFs) algorithm (DMP-Fs) for lane change obstacle avoidance, enabling rapid coordinated planning of both path and velocity. The DMPs algorithm is based on the lane change trajectories of human drivers. Therefore, this paper first collected lane change trajectory samples from on-road vehicle experiments.
Technical Paper

A MPC based Cooperated Control Strategy for Enhanced Agility and Stability of Four-Wheel Steering and Drive Electric Vehicles

2024-04-09
2024-01-2768
Multiple actuators equipped in electric vehicles, such as four- wheel steering (4WS) and four-wheel drive (4WD), provide more degrees of freedom for chassis motion control. However, developing independent control strategies for distinct actuator types could result in control conflicts, potentially degrading the vehicle's motion performance. To address this issue, a model predictive control (MPC) based steering-drive cooperated control strategy for enhanced agility and stability of electric vehicles with 4WD and 4WS is proposed in this paper. By designing the control constraints within the MPC framework, the strategy enables single-drive control, single-steering control, and steering-drive cooperative control. In the upper control layer, a linear time-varying MPC (LTV-MPC) is designed to generate optimal additional yaw moment and additional steering angles of front and rear wheels to enhance vehicle agility and lateral stability.
Technical Paper

Lane Changing Comfort Trajectory Planning of Intelligent Vehicle Based on Particle Swarm Optimization Improved Bezier Curve

2023-12-31
2023-01-7103
This paper focuses on lane-changing trajectory planning and trajectory tracking control in autonomous vehicle technology. Aiming at the lane-changing behavior of autonomous vehicles, this paper proposes a new lane-changing trajectory planning method based on particle swarm optimization (PSO) improved third-order Bezier curve path planning and polynomial curve speed planning. The position of Bezier curve control points is optimized by the particle swarm optimization algorithm, and the lane-changing trajectory is optimized to improve the comfort of lane changing process. Under the constraints of no-collision and vehicle dynamics, the proposed method can ensure that the optimal lane-changing trajectory can be found in different lane-changing scenarios. To verify the feasibility of the above planning algorithm, this paper designs the lateral and longitudinal controllers for trajectory tracking control based on the vehicle dynamic tracking error model.
Technical Paper

Electro-Hydraulic Composite Braking Control Optimization for Front-Wheel-Driven Electric Vehicles Equipped with Integrated Electro-Hydraulic Braking System

2023-11-05
2023-01-1864
With the development of brake-by-wire technology, electro-hydraulic composite braking technology came into being. This technology distributes the total braking force demand into motor regenerative braking force and hydraulic braking force, and can achieve a high energy recovery rate. The existing composite braking control belongs to single-channel control, i.e., the four wheel braking pressures are always the same, so the hydraulic braking force distribution relationship of the front and rear wheels does not change. For single-axle-driven electric vehicles, the additional regenerative braking force on the driven wheels will destroy the original braking force distribution relationship, resulting in reduced braking efficiency of the driven wheels, which are much easier to lock under poor road adhesion conditions.
Technical Paper

Simplified Modeling of an Innovative Heating Circuit for Battery Pack Based on Traction Motor Drive System

2023-04-11
2023-01-0515
Alternating current (AC) heating is an efficient and homogeneous manner to warm Lithium-ion batteries (LIBs) up. The integrated design of AC heating combined with the motor drive circuit has been studied by many scholars. However, the problems of excessive heating frequency (>1kHz) and zeros torque output of the motor during the heating process have not been solved. High-frequency AC excitation may be detrimental to the battery because the effect of high-frequency AC excitation on the state of health of the battery is unknown. In addition, although the zero-torque output can be realized by controlling the q-axis current to zero, the torque ripple is still difficult to eliminate in a real-world application. To further solve the above problems, the motor’s neutral conductor is pulled out and connected to a large capacitor to increase the current amplitude of the AC heating at low frequencies.
Technical Paper

Dynamic Switch Control of Steering Modes for 4WID-4WIS Electric Vehicle Based on MOEA/D Optimization

2023-04-11
2023-01-0641
To overcome the shortcoming that vehicles with multiple steering modes need to switch steering modes at parking or very low speeds, a dynamic switch method of steering modes based on MOEA/D (Multi-objective Evolutionary Algorithm Based on Decomposition) was proposed for 4WID-4WIS (Four Wheel Independent Drive-Four Wheel Independent Steering) electric vehicle, considering the smoothness of dynamic switch, the lateral stability of the vehicle and the energy economy of tires. First of all, the vehicle model of 4WID-4WIS was established, and steering modes were introduced and analyzed. Secondly, the conditions for the dynamic switch of steering modes were designed with the goal of stability and safety. According to different constraints, the control strategy was formulated to obtain the target angle of the active wheels. Then aiming at the smoothness of the dynamic switch, the active wheel angle trajectory was constructed based on the B-spline theory.
Technical Paper

Experimental Study on Effect of State of Charge on Thermal Runaway Characteristics of Commercial Large-Format NCM811 Lithium-Ion Battery

2023-04-11
2023-01-0136
The application of Li(Ni0.8Co0.1Mn0.1)O2 (NCM811) cathode-based lithium-ion batteries (LIBs) has alleviated electric vehicle range anxiety. However, the subsequent thermal safety issues limit their market acceptance. A detailed analysis of the failure evolution process for large-format LIBs is necessary to address the thermal safety issue. In this study, prismatic cells with nominal capacities of 144Ah and 125Ah are used to investigate the thermal runaway (TR) characteristics triggered by lateral overheating. Additionally, TR characteristics under two states of charge (SoCs) (100% and 5%) are discussed. Two cells with 100% SoC exhibit similar characteristics, including high failure temperature, high inhomogeneity of temperature distribution, multi-points jet fire, and significant mass loss. Two cells with 5% SoC demonstrate only a slight rupture of the safety valve and the emission of white smoke.
Technical Paper

Probabilistic Vehicle Trajectory Prediction Based on LSTM Encoder-Decoder and Attention Mechanism

2022-12-22
2022-01-7106
In order to realize driving safety in highway scenarios, autonomous vehicles need to predict and reason about the driving intentions and motion trajectories of surrounding target vehicles in the near feature. Essentially, trajectory prediction of target vehicles can be viewed as a typical time series generation problem, which predicts the future trajectory of the vehicle through analyzing the input of historical trajectory information or its control signals. In actual traffic scenarios, the movement between vehicles is a process of mutual game and cooperation, namely the future trajectory of a vehicle is not only related to its own historical trajectory, but also to surrounding vehicles motion. However, different surrounding traffic participants have different influence on the target vehicle, and the future motion of the vehicle is often affected by some specific surrounding traffic agents deeply.
Technical Paper

Object Detection and Tracking Based on Lidar for Autonomous Vehicles on Highway Conditions

2022-12-22
2022-01-7103
Multiple object detection and tracking are central aspects of modeling the environment of autonomous vehicles. Lidar is a necessary component in the autonomous driving system. Without Lidar sensors, we will most probably not see fully self-driving cars become a reality. Lidar sensing gives us high-resolution data by sending out thousands of laser signals. In advanced driver assistance systems or automated driving systems, 3-D point clouds from lidar scans are typically used to measure physical surfaces. Lidar is a powerful sensor that you can use in challenging environments where other sensors might prove inadequate. Lidar can provide a complete 360-degree view of a scene. This paper designs Lidar based multi-target detection and tracking system based on the traditional point cloud processing method including down-sampling, denoising, segmentation, and clustering objects.
Technical Paper

Research on the Occupant Discomfort due to Safety Perception in Overtaking Scenarios

2022-12-22
2022-01-7089
With the widespread application of autonomous driving technology, occupant comfort has become a key topic. Occupant comfort of autonomous vehicles depends on the driving system’s performance, so studying the causes of occupant discomfort will help design driving systems. In addition to the discomfort in NVH and thermal comfort, occupant comfort is also affected by other factors such as safety perception. To study the impact of safety perception on comfort, this paper designed a road experiment and focused on the overtaking scenarios. Because the interaction between the ego vehicle and others is strong during overtaking, the occupants are more likely to receive visual stimuli, resulting in discomfort caused by safety perception. In the experiment, occupant discomfort scores were collected in real-time by the tool developed in this paper.
Technical Paper

Perception-Aware Path Planning for Autonomous Vehicles in Uncertain Environment

2022-12-22
2022-01-7077
Recent researches in autonomous driving mainly consider the uncertainty in perception and prediction modules for safety enhancement. However, obstacles which block the field-of-view (FOV) of sensors could generate blind areas and leaves environmental uncertainty a remaining challenge for autonomous vehicles. Current solutions mainly rely on passive obstacles avoidance in path planning instead of active perception to deal with unexplored high-risky areas. In view of the problem, this paper introduces the concept of information entropy, which quantifies uncertain information in the blind area, into the motion planning module of autonomous vehicles. Based on model predictive control (MPC) scheme, the proposed algorithm can plan collision-free trajectories while actively explore unknown areas to minimize environmental uncertainty. Simulation results under various challenging scenarios demonstrate the improvement in safety and comfort with the proposed perception-aware planning scheme.
Technical Paper

Comprehensively Investigating the Impact of High-Temperature Cyclic Aging on Thermal Runaway Characteristics for Lithium-Ion Batteries

2022-10-28
2022-01-7061
Battery safety issues have severely limited the rapid development and popularization of electric vehicles. Harsh conditions such as high temperature accelerate the degradation of battery safety. To address this issue, a comprehensive analysis of the impact of high-temperature cyclic aging on lithium-ion battery safety is carried out. In the Accelerating Rate Calorimeter, lithium-ion batteries are performed on adiabatic thermal runaway tests and overcharge tests. Regardless of the fully-charged state or half-charged state, in the adiabatic thermal runaway process, high-temperature cyclic aging reduces the characteristic temperature, and the activation energy from the self-heating temperature to thermal runaway triggering temperature decreases. During the overcharge process, high-temperature cyclic aging increases the voltage plateau and the crest voltage before thermal runaway, and their corresponding charging temperature decreases.
Research Report

Use of Proton-exchange Membrane Fuel Cells in Ground Vehicles

2022-09-26
EPR2022020
Fuel cell electric vehicles (FCEVs) require multiple components to operate properly, and the fuel cell stack—the source of power—is one of the most important components. While the number of enterprises manufacturing and selling fuel cell stacks is increasing globaly year after year, the residual challenges of core components and technologies still need to be resolved in order to keep pace with the development of lithium-ion batteries (i.e., its primary competitor). Additionally, many production and distribution standards are seen as unsettled. These barriers make large-scale commercialization an issue. Use of Proton-exchange Membrane Fuel Cells in Ground Vehicles explores the opportunities and challenges within the PEMFC industry. With the help of expert contributors, a critical overview of fuel cells and the FCEV industry is presented, and core technology, applications, costs, and trends are analyzed.
Technical Paper

Construction and Test of Wireless Remote Control System for Self-Driving Car

2022-03-29
2022-01-0064
Aiming at the test safety problems in the early stage of self-driving cars development, firstly the virtual vehicle on-board CAN data acquisition module of the present project was designed based on virtual LabVIEW. Then a wireless remote control system for the self-driving car was constructed, which integrated the built virtual vehicle on-board CAN data acquisition system, the remote real-time image monitoring module and the remote upper computer control module based on ZigBee wireless transmission. It can execute the environmental awareness training and continuous and complex motion manipulation testing of the vehicle without relying on the driver, which can solve the safety problems in the tests of initial development of self-driving cars. Finally, the four-wheel independent steering electric vehicle was used as the self-driving test vehicle, and the wireless remote control system was tested on the double lane change type path and S-type path.
Technical Paper

Fatigue Analysis on a Battery Support Plate for the Pure Electric Vehicle

2022-03-29
2022-01-0256
As the international community strengthens the control of carbon dioxide emissions, electric vehicles have gradually become a substitute for internal combustion engine vehicles. The battery pack is one of the most important components of electric vehicles. The strength and fatigue performance of the battery support plate not only affect the performance of the vehicle but also concern the safety of the driver. In the present study, the finite element model of a battery pack for fatigue analysis is completely established. The random vibration stress response analysis and acceleration power spectral density response analysis of the support plate for the battery pack are carried out, and the accuracy of the finite element model is verified by a random vibration test.
X