Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Research on Automatic Removal of Outliers in Fuel Cell Test Data and Fitting Method of Polarization Curve

2024-04-09
2024-01-2896
Fuel cell vehicles have always garnered a lot of attention in terms of energy utilization and environmental protection. In the analysis of fuel cell performance, there are usually some outliers present in the raw experimental data that can significantly affect the data analysis results. Therefore, data cleaning work is necessary to remove these outliers. The polarization curve is a crucial tool for describing the basic characteristics of fuel cells, typically described by semi-empirical formulas. The parameters in these semi-empirical formulas are fitted using the raw experimental data, so how to quickly and effectively automatically identify and remove data outliers is a crucial step in the process of fitting polarization curve parameters. This article explores data-cleaning methods based on the Local Outlier Factor (LOF) algorithm and the Isolation Forest algorithm to remove data outliers.
Technical Paper

Investigation of Injection Strategy on Combustion and Emission Characteristics in a GDI Engine with a 50 MPa Injection System

2024-04-09
2024-01-2381
A DMS500 engine exhaust particle size spectrometer was employed to characterize the effects of injection strategies on particulate emissions from a turbocharged gasoline direct injection (GDI) engine. The effects of operating parameters (injection pressure, secondary injection ratio and secondary injection end time) on particle diameter distribution and particle number density of emission were investigated. The experimental result indicates that the split injection can suppress the knocking tendency at higher engine loads. The combustion is improved, and the fuel consumption is significantly reduced, avoiding the increase in fuel pump energy consumption caused by the 50 MPa fuel injection system, but the delayed injection increases particulate matter emissions.
Technical Paper

Performance Analysis of Fuel Cells for High Altitude Long Flight Multi-rotor Drones

2024-04-09
2024-01-2177
In recent years, the burgeoning applications of hydrogen fuel cells have ignited a growing trend in their integration within the transportation sector, with a particular focus on their potential use in multi-rotor drones. The heightened mass-based energy density of fuel cells positions them as promising alternatives to current lithium battery-powered drones, especially as the demand for extended flight durations increases. This article undertakes a comprehensive exploration, comparing the performance of lithium batteries against air-cooled fuel cells, specifically within the context of multi-rotor drones with a 3.5kW power requirement. The study reveals that, for the specified power demand, air-cooled fuel cells outperform lithium batteries, establishing them as a more efficient solution.
Technical Paper

Uniformity Identification and Sensitivity Analysis of Water Content of Each PEM Fuel Cell Based on New Online High Frequency Resistance Measurement Technique

2024-04-09
2024-01-2189
Water content estimation is a key problem for studying the PEM fuel cell. When several hundred fuel cells are connected in serial and their active surface area is enlarged for sufficient power, the difference between cells becomes significant with respect to voltage and water content. The voltage of each cell is measurable by the cell voltage monitor (CVM) while it is difficult to estimate water content of the individual. Resistance of the polymer electrolyte membrane is monotonically related to its water content, so that the new online high frequency resistance (HFR) measurement technique is investigated to identify the uniformity of water content between cells and analyze its sensitivity to operating conditions in this paper. Firstly, the accuracy of the proposed technique is experimentally validated to be comparable to that of a commercialized electrochemical impedance spectroscopy (EIS) measurement equipment.
Technical Paper

A Terminal-Velocity Heuristic Method for Speed Optimization of EVs in Multi-Intersection Scenarios

2024-04-09
2024-01-2001
The optimization of speed holds critical significance for pure electric vehicles. In multi-intersection scenarios, the determination of terminal velocity plays a crucial role in addressing the complexities of the speed optimization problem. However, prevailing methodologies documented in the literature predominantly adhere to a fixed speed constraint derived from traffic light regulations, serving as the primary basis for the terminal velocity constraint. Nevertheless, this strategy can result in unnecessary acceleration and deceleration maneuvers, consequently leading to an undesirable escalation in energy consumption. To mitigate these issues and attain an optimal terminal velocity, this paper proposes an innovative speed optimization method that incorporates a terminal-velocity heuristic. Firstly, a traffic light state model is established to determine the speed range required to avoid coming to a stop at signalized intersections.
Technical Paper

Simulation Study of Sparked-Spray Induced Combustion at Ultra-Lean Conditions in a GDI Engine

2024-04-09
2024-01-2107
Ultra-lean combustion of GDI engine could achieve higher thermal efficiency and lower NOx emissions, but it also faces challenges such as ignition difficulties and low-speed flame propagation. In this paper, the sparked-spray is proposed as a novel ignition method, which employs the spark to ignite the fuel spray by the cooperative timing control of in-cylinder fuel injection and spark ignition and form a jet flame. Then the jet flame fronts propagate in the ultra-lean premixed mixture in the cylinder. This combustion mode is named Sparked-Spray Induced Combustion (SSIC) in this paper. Based on a 3-cylinder 1.0L GDI engine, a 3D simulation model is established in the CONVERGE to study the effects of ignition strategy, compression ratio, and injection timing on SSIC with a global equivalence ratio of 0.50. The results show it is easier to form the jet flame when sparking at the spray front because the fuel has better atomization and lower turbulent kinetic energy at the spray front.
Technical Paper

Combustion and HC&PN Emission Characteristics at First Cycle Starting of Gasoline Engine under Lean Burn Based on Active Pre-Chamber

2024-04-09
2024-01-2108
As a novel ignition technology, pre-chamber ignition can enhance ignition energy, promote flame propagation, and augment turbulence. However, this technology undoubtedly faces challenges, particularly in the context of emission regulations. Of this study, the transient characteristics of combustion and emissions in a hybrid electric vehicle (HEV) gasoline engine with active pre-chamber ignition (PCI) under the first combustion cycle of quick start are focused. The results demonstrate that the PCI engine is available on the first cycle for lean combustion, such as lambda 1.6 to 2.0, and exhibit particle number (PN) below 7×107 N/mL at the first cycle. These particles are predominantly composed of nucleation mode (NM, <50 nm) particles, with minimal accumulation mode (AM, >50 nm) particles.
Technical Paper

3-Dimensional Numerical Simulation and Research on Internal Flow about Different EGR Rates in Venturi Tube of EGR System for a Turbocharged Diesel Engine

2024-04-09
2024-01-2418
Exhaust gas recirculation technology is one of the main methods to reduce engine emissions. The pressure of the intake pipe of turbocharged direct-injection diesel engine is high, and it is difficult to realize EGR technology. The application of Venturi tube can easily solve this problem. In this paper, the working principle of guide-injection Venturi tube is introduced, the EGR system and structure of a turbocharged diesel engine using the guide-injection Venturi tube are studied. According to the working principle of EGR system of turbocharged diesel engine, the model of guide-injection Venturi tube is established, the calculation grid is divided, and it is carried out by using Computational Fluid Dynamics method that the three-dimensional numerical simulation of the internal flow of Venturi tube under different EGR rates injection.
Technical Paper

Effect of Residence Time on Morphology and Nanostructure of Soot in Laminar Ethylene and Ammonia-Ethylene Flames

2024-04-09
2024-01-2385
As one of the pollutants that cannot be ignored, soot has a great impact on human health, environment, and energy conversion. In this investigation, the effect of residence time (25ms, 35ms, and 45ms) and ammonia on morphology and nanostructure of soot in laminar ethylene flames has been studied under atmospheric conditions and different flame heights (15 mm and 30 mm). The transmission electron microscopy (TEM) and high-resolution transmission electron microscope (HRTEM) are used to obtain morphology of aggregates and nanostructure of primary particles, respectively. In addition, to analyze the nanostructure of the particles, an analysis program is built based on MATLAB software, which is able to obtain the fringe separation distance, fringe length, and fringe tortuosity parameters of primary particles, and has been verified by the multilayer graphene interlayer distance.
Technical Paper

Effect of Port Water Injection on the Knock and Combustion Characteristics for an Argon Power Cycle Hydrogen Engine

2024-04-09
2024-01-2612
Argon power cycle hydrogen engine is an internal combustion engine that employs argon instead of nitrogen of air as the working fluid, oxygen as the oxidizer, and hydrogen as the fuel. Since argon has a higher specific heat ratio than air, argon power cycle hydrogen engines have theoretically higher indicated thermal efficiencies according to the Otto cycle efficiency formula. However, argon makes the end mixture more susceptible to spontaneous combustion and thus is accompanied by a stronger knock at a lower compression ratio, thus limiting the improvement of thermal efficiency in engine operation. In order to suppress the limitation of knock on the thermal efficiency, this paper adopts a combination of experimental and simulation methods to investigate the effects of port water injection on the knock suppression and combustion characteristics of an argon power cycle hydrogen engine.
Technical Paper

Effect of Timing Strategy on Mixture Formation, Performance and Emission of Inlet Injection Hydrogen Engine

2024-04-09
2024-01-2614
In order to scrutinize the timing variables impacting the combustion performance and emissions of the Port Fuel Injection hydrogen engine (PFI-H2ICE), a model of a four-cylinder hydrogen engine is meticulously built utilizing the 1D software GT-POWER. The effect of excess air coefficients and timing strategies (including the intake valve opening timing (IVO), the start of injection timing (SOI), and ignition timing) is analyzed in this study. The main conclusions are as follows: The hydrogen engine remold from the Isuzu JE4N28 nature gas engine manifests a lean combustion threshold ranging between 2.0 and 2.5. Notably, advancing intake valve opening timing by 20°CA has proven beneficial to the brake thermal efficiency (BTE) of the hydrogen engine while reducing the NOx emissions by a substantial margin, and advancing intake valve opening timing bears the virtue of strengthen the positive influence of the start of injection timing upon the engine's combustion performance.
Technical Paper

RIO-Vehicle: A Tightly-Coupled Vehicle Dynamics Extension of 4D Radar Inertial Odometry

2024-04-09
2024-01-2847
Accurate and reliable localization in GNSS-denied environments is critical for autonomous driving. Nevertheless, LiDAR-based and camera-based methods are easily affected by adverse weather conditions such as rain, snow, and fog. The 4D Radar with all-weather performance and high resolution has attracted more interest. Currently, there are few localization algorithms based on 4D Radar, so there is an urgent need to develop reliable and accurate positioning solutions. This paper introduces RIO-Vehicle, a novel tightly coupled 4D Radar/IMU/vehicle dynamics within the factor graph framework. RIO-Vehicle aims to achieve reliable and accurate vehicle state estimation, encompassing position, velocity, and attitude. To enhance the accuracy of relative constraints, we introduce a new integrated IMU/Dynamics pre-integration model that combines a 2D vehicle dynamics model with a 3D kinematics model.
Technical Paper

Experimental Analysis on Noise and Vibration of Electric Drive System Focusing on Order Contribution Ratio

2024-04-09
2024-01-2339
In the process of automobile industrialization, integrated electric drive systems turn to be the mainstream transmission system of electric vehicles gradually. The main sources of noise and vibration in the chassis are from the gear reducer and motor system, as a replacement of engine. For improving the electric vehicles NVH performance, effective identification and quantitative analysis of the main noise sources are a significant basis. Based on the rotating hub test platform in the semi-anechoic chamber, in this experiment, an electric vehicle equipped with a three-in-one electric drive system is taken as the research object. As well the noise and vibration signals in the interior vehicle and the near field of the electric drive system are collected under the operating conditions of uniform speed, acceleration speed, and coasting with gears under different loads, and the test results are processed and analyzed by using the spectral analysis and order analysis theories.
Technical Paper

Cooperative Lane Change Control Based on Null-Space-Behavior for a Dual-Column Intelligent Vehicle Platoon

2023-12-20
2023-01-7064
With the extension of intelligent vehicles from individual intelligence to group intelligence, intelligent vehicle platoons on intercity highways are important for saving transportation costs, improving transportation efficiency and road utilization, ensuring traffic safety, and utilizing local traffic intelligence [1]. However, there are several problems associated with vehicle platoons including complicated vehicle driving conditions in or between platoon columns, a high degree of mutual influence, dynamic optimization of the platoon, and difficulty in the cooperative control of lane change. Aiming at the dual-column intelligent vehicle platoon control (where “dual-column” refers to the vehicle platoon driving mode formed by multiple vehicles traveling in parallel on two adjacent lanes), a multi-agent model as well as a cooperative control method for lane change based on null space behavior (NSB) for unmanned platoon vehicles are established in this paper.
Technical Paper

Electro-Hydraulic Composite Braking Control Optimization for Front-Wheel-Driven Electric Vehicles Equipped with Integrated Electro-Hydraulic Braking System

2023-11-05
2023-01-1864
With the development of brake-by-wire technology, electro-hydraulic composite braking technology came into being. This technology distributes the total braking force demand into motor regenerative braking force and hydraulic braking force, and can achieve a high energy recovery rate. The existing composite braking control belongs to single-channel control, i.e., the four wheel braking pressures are always the same, so the hydraulic braking force distribution relationship of the front and rear wheels does not change. For single-axle-driven electric vehicles, the additional regenerative braking force on the driven wheels will destroy the original braking force distribution relationship, resulting in reduced braking efficiency of the driven wheels, which are much easier to lock under poor road adhesion conditions.
Technical Paper

Efficiency Enhancement and Lean Combustion Performance Improvement by Argon Power Cycle in a Methane Direct Injection Engine

2023-10-31
2023-01-1618
Argon Power Cycle (APC) is an innovative future potential power system for high efficiency and zero emissions, which employs an Ar-O2 mixture rather than air as the working substance. However, APC hydrogen engines face the challenge of knock suppression. Compared to hydrogen, methane has a better anti-knock capacity and thus is an excellent potential fuel for APC engines. In previous studies, the methane is injected into the intake port. Nevertheless, for lean combustion, the stratified in-cylinder mixture formed by methane direct injection has superior combustion performances. Therefore, based on a methane direct injection engine at compression ratio = 9.6 and 1000 r/min, this study experimentally investigates the effects of replacing air by an Ar-O2 mixture (79%Ar+21%O2) on thermal efficiencies, loads, and other combustion characteristics under different excess oxygen ratios. Meanwhile, the influences of varying the methane injection timing are studied.
Technical Paper

NOx Emission Characteristics of Active Pre-Chamber Jet Ignition Engine with Ammonia Hydrogen Blending Fuel

2023-10-31
2023-01-1629
Ammonia is employed as the carbon-free fuel in the future engine, which is consistent with the requirements of the current national dual-carbon policy. However, the great amount of NOx and unburned NH3/H2 in the exhaust emissions is produced from combustion of ammonia and is one kind of the most strictly controlled pollutants in the emission regulation. This paper aims to investigate the NOx and unburned NH3/H2 generative process and emission characteristics by CFD simulation during the engine combustion. The results show that the unburned ammonia and hydrogen emissions increase with an increase of equivalence ratio and hydrogen blending ratio. In contrast, the emission concentrations of NOx, NO, and NO2 decrease with the increasing of equivalence ratio, but increase with hydrogen blending ratio rising. The emission concentration of N2O is highly sensitive to the O/H group and temperature, and it is precisely opposite to that of NO and NO2.
Technical Paper

Combustion and Emission Characteristics of Ammonia Jet Flames, Based on a Controllable Activated Thermal Atmosphere

2023-10-31
2023-01-1645
Ammonia is a new type of carbon-free fuel with low cost, clean and safe. The research and application of zero-carbon fuel internal combustion engines has become the mainstream of future development. However, there still exist problems should be solved in the application of ammonia fuel. Due to the lower flame laminar speed and higher ignition temperature, ammonia may have unstable combustion phenomena. In this work, the characteristics of ammonia combustion have been investigated, based on controllable thermal activated atmosphere burner. The ignition delay has been used to analyze the ammonia combustion characteristics. With the increase in co-flow temperature, the ignition delay of ammonia/air has an obvious decline. In order to investigate the emission characteristics of ammonia, CHEMKIN is used to validate the different chemical reaction mechanisms and analyse the ammonia emissions.
Technical Paper

Simulation Study of the Effect of Nozzle Position and Hydrogen Injection Strategy on Hydrogen Engine Combustion Characteristic

2023-10-30
2023-01-7018
Hydrogen energy is a kind of secondary energy with an abundant source, wide application, green, and is low-carbon, which is important for building a clean, low-carbon, safe, and efficient energy system and achieving the goal of carbon peaking and being carbon neutral. In this paper, the effect of nozzle position, hydrogen injection timing, and ignition timing on the in-cylinder combustion characteristics is investigated separately with the 13E hydrogen engine as the simulation object. The test results show that when the nozzle position is set in the middle of the intake and exhaust tracts (L2 and L3), the peak in-cylinder pressure is slightly higher than that of L1, but when the nozzle position is L2, the cylinder pressure curve is the smoothest, the peak exothermic rate is the lowest, and the peak cylinder temperature is the lowest.
Technical Paper

Research on the Control Method of Staggered Parallel Boost Structure in Fuel Cell System

2023-10-30
2023-01-7028
Fuel cells’ soft output characteristics and mismatched voltage levels with subordinate electrical devices necessitate the use of DC/DC converters, which are an important part of the power electronic subsystem of the fuel cell system. The staggered parallel Boost topology is commonly employed in fuel cell DC/DC converters. This paper focuses on the control characteristics of the two-phase interleaved parallel Boost topology in the context of a fuel cell system. Specifically, we derive the small-signal model and output-control transfer function of the topology, and design a controller based on frequency characteristic analysis. Our proposed controller uses a cascaded double-ring structure and supports both constant current and constant voltage switching modes. To evaluate the effectiveness of our proposed control strategy, we conduct simulation and prototype testing.
X