Refine Your Search

Topic

Search Results

Technical Paper

4D Radar-Inertial SLAM based on Factor Graph Optimization

2024-04-09
2024-01-2844
SLAM (Simultaneous Localization and Mapping) plays a key role in autonomous driving. Recently, 4D Radar has attracted widespread attention because it breaks through the limitations of 3D millimeter wave radar and can simultaneously detect the distance, velocity, horizontal azimuth and elevation azimuth of the target with high resolution. However, there are few studies on 4D Radar in SLAM. In this paper, RI-FGO, a 4D Radar-Inertial SLAM method based on Factor Graph Optimization, is proposed. The RANSAC (Random Sample Consensus) method is used to eliminate the dynamic obstacle points from a single scan, and the ego-motion velocity is estimated from the static point cloud. A 4D Radar velocity factor is constructed in GTSAM to receive the estimated velocity in a single scan as a measurement and directly integrated into the factor graph. The 4D Radar point clouds of consecutive frames are matched as the odometry factor.
Technical Paper

A Terminal-Velocity Heuristic Method for Speed Optimization of EVs in Multi-Intersection Scenarios

2024-04-09
2024-01-2001
The optimization of speed holds critical significance for pure electric vehicles. In multi-intersection scenarios, the determination of terminal velocity plays a crucial role in addressing the complexities of the speed optimization problem. However, prevailing methodologies documented in the literature predominantly adhere to a fixed speed constraint derived from traffic light regulations, serving as the primary basis for the terminal velocity constraint. Nevertheless, this strategy can result in unnecessary acceleration and deceleration maneuvers, consequently leading to an undesirable escalation in energy consumption. To mitigate these issues and attain an optimal terminal velocity, this paper proposes an innovative speed optimization method that incorporates a terminal-velocity heuristic. Firstly, a traffic light state model is established to determine the speed range required to avoid coming to a stop at signalized intersections.
Technical Paper

Optical Investigation of Lean Combustion Characteristics of Non-Uniform Distributed Orifice Passive Pre-Chamber on a High Compression Ratio GDI Engine

2024-04-09
2024-01-2101
The passive pre-chamber (PC) is valued for its jet ignition (JI) and is suitable for wide use in the field of gasoline direct injection (GDI) for small passenger cars, which can improve the performance of lean combustion. However, the intake, exhaust, and ignition combustion stability of the engine at low speed is a shortcoming that has not been overcome. Changing the structural design to increase the fluidity of the main chamber (MC) and pre-chamber (PC) may reduce jet ignition performance, affecting engine dynamics. This investigation is based on non-uniformly nozzles distributed passive pre-chamber, which is adjusted according to the working medium exchange between PC and MC. The advantages and disadvantages of the ignition mode of PC and SI in the target engine speed range are compared through optical experiments on a small single-cylinder GDI engine.
Technical Paper

Coordinated Longitudinal and Lateral Motions Control of Automated Vehicles Based on Multi-Agent Deep Reinforcement Learning for On-Ramp Merging

2024-04-09
2024-01-2560
The on-ramp merging driving scenario is challenging for achieving the highest-level autonomous driving. Current research using reinforcement learning methods to address the on-ramp merging problem of automated vehicles (AVs) is mainly designed for a single AV, treating other vehicles as part of the environment. This paper proposes a control framework for cooperative on-ramp merging of multiple AVs based on multi-agent deep reinforcement learning (MADRL). This framework facilitates AVs on the ramp and adjacent mainline to learn a coordinate control policy for their longitudinal and lateral motions based on the environment observations. Unlike the hierarchical architecture, this paper integrates decision and control into a unified optimal control problem to solve an on-ramp merging strategy through MADRL.
Technical Paper

Simulation Study of the Effect of Nozzle Position and Hydrogen Injection Strategy on Hydrogen Engine Combustion Characteristic

2023-10-30
2023-01-7018
Hydrogen energy is a kind of secondary energy with an abundant source, wide application, green, and is low-carbon, which is important for building a clean, low-carbon, safe, and efficient energy system and achieving the goal of carbon peaking and being carbon neutral. In this paper, the effect of nozzle position, hydrogen injection timing, and ignition timing on the in-cylinder combustion characteristics is investigated separately with the 13E hydrogen engine as the simulation object. The test results show that when the nozzle position is set in the middle of the intake and exhaust tracts (L2 and L3), the peak in-cylinder pressure is slightly higher than that of L1, but when the nozzle position is L2, the cylinder pressure curve is the smoothest, the peak exothermic rate is the lowest, and the peak cylinder temperature is the lowest.
Technical Paper

Matching and Optimization Design of Electric Drive Assembly Mounting System of Electric Vehicle

2023-10-30
2023-01-7002
The design method for the powertrain mounting system in internal combustion engine vehicles is well-established. Electric vehicles experience higher vibration frequencies and more significant transient responses when accelerating or braking than fuel vehicles due to their high speed and fast response. Therefore, the design of the electric drive assembly mounting system requires further development. The modeling of electric drive assembly mounting systems often neglects the mounting bracket’s influence, which significantly affects the center of mass and rotational inertia of the electric drive assembly. This paper examines the effect of the mounting bracket in the electric drive assembly mounting system. It establishes a mathematical model with six degrees of freedom for the mounting system, considering the mounting bracket. By comparing the natural characteristics and the transient response, it is discussed whether the mass of the mounting bracket greatly influences the system.
Technical Paper

Experimental Analysis and Dynamic Optimization Design of Hinge Mechanism

2023-04-11
2023-01-0777
Optimization design of hard point parameters for hinge mechanism has been paid more attention in recent years, attributable to their significant improvement in dynamic performance. In this paper, the experimental analysis and dynamic optimization design of hinge mechanism is performed. The acceleration measurement experiments are carried out at different arrangement points and under different working conditions. Furthermore, the accuracy of established multi-body dynamics model is verified by three-axis accelerometer measurement experiment. In addition, sensitivity analysis for electric strut and gas strut coordinates is performed and shows that the Y coordinate of the lower end point of the electric strut is the design variable that has the greatest impact on the responses.
Technical Paper

Research on Low Illumination Image Enhancement Algorithm and Its Application in Driver Monitoring System

2023-04-11
2023-01-0836
The driver monitoring system (DMS) plays an essential role in reducing traffic accidents caused by human errors due to driver distraction and fatigue. The vision-based DMS has been the most widely used because of its advantages of non-contact and high recognition accuracy. However, the traditional RGB camera-based DMS has poor recognition accuracy under complex lighting conditions, while the IR-based DMS has a high cost. In order to improve the recognition accuracy of conventional RGB camera-based DMS under complicated illumination conditions, this paper proposes a lightweight low-illumination image enhancement network inspired by the Retinex theory. The lightweight aspect of the network structure is realized by introducing a pixel-wise adjustment function. In addition, the optimization bottleneck problem is solved by introducing the shortcut mechanism.
Technical Paper

Motor Stator Modeling and Equivalent Material Parameters Identification for Electromagnetic Noise Calculation

2023-04-11
2023-01-0530
Aiming at the laborious process in motor structure modeling for acoustic noise calculation, an improved stator structure modeling scheme is proposed, which includes stator structure simplification and equivalent material parameters identification. The stator assembly is modeled as a homogeneous solid with the same size as the stator core, and the influence of model simplification is compensated by orthotropic equivalent material parameters. The equivalent material parameters are acquired through an optimization algorithm by minimizing the error between FEM calculated modal frequencies and the modal tested results. With the stator assembly model, the motor assembly model is built, and the constrained modal characteristics of the motor assembly are verified by comparing the modal frequencies to the resonance bands in the vibration acceleration spectrum. Finally, the motor structure model is used to calculate the electromagnetic noise of an induction motor.
Technical Paper

Study on Local Stress Variable Strength Design Effect of B-Pillar Structure

2023-04-11
2023-01-0082
In this paper, the principles, advantages and disadvantages of the main technology of variable strength design of automobile B-pillar Based on the finite element simulation technology, the local stress variable strength design effect of Automobile B-pillar structure is simulated, compared and evaluated. The simulation results show that with the same mechanical properties, the overall lightweight degree of B-pillar structure with variable strength design can be reduced by about 8.9%. With the expansion of the strengthening area of variable strength design of parts, the degree of lightweight of parts can be further improved. It can be seen that the local stress variable strength design method provides a new technical option for the lightweight design of automobile parts.
Technical Paper

The Multi-Objective Optimization Design of Hard Point Parameters for Double Wishbone Independent Suspension

2023-04-11
2023-01-0127
There are often a large number of design variables and responses in suspension hard point optimization design. The traditional optimization strategy integrating heuristic algorithm and simulation model is not applicable due to its low efficiency. To solve optimization problems with huge number of design variables and responses, a multi-objective optimization framework combined heuristic optimization algorithm with multi-objective decision-making method is developed. Specifically, the multi-objective optimization was performed by dividing the problem into two independent sub-problems of multi-objective optimization and multi-objective decision-making. Further, to reduce the number of sample points required for building a surrogate model, a two-stage multi-objective optimization is proposed.
Technical Paper

Modeling and Study on Static Performance of the Double-Top-Foil Air Foil Journal Bearing for Air Compressors in Fuel Cell Vehicles

2023-04-11
2023-01-0870
Air foil bearings are gradually applied in air compressors in fuel cell vehicles for the advantages of high speed, oil-free and non-contact. Advanced air foil bearings with different structures are used to improve the performance of air compressor. Accurate modeling of the complex structures in air foil bearings has become a research hotspot in recent years. This paper presents a theoretical model for a double-top-foil air foil journal bearing (DAFJB) for centrifugal air compressors used in fuel cell vehicles. The foil structure is modeled by finite element method (FEM) using shell elements. Coulomb law and penalty function method are applied to model the tangential and normal behavior of the contact areas. The local contact between the middle top foil and the bump foil, the bump foil and the bearing sleeve are modeled using node-to-segment contact method. The large-area contact behavior between two layers of top foils is modeled by simplified surface-to-surface contact scheme.
Technical Paper

Multi-objective Combination Optimization of Automobile Subframe Dynamic Stiffness

2023-04-11
2023-01-0005
Subframe is an important part of automobile chassis, which is connected with body, suspension control arm, powertrain mount, etc. The dynamic stiffness value of the connection point is an important performance index of the subframe, which affects the vibration of the vehicle body. This paper introduces the basic concept and related theory of dynamic stiffness, derives the theoretical formula of dynamic stiffness, and analyzes the frequency response of the key points of the subframe. In view of the fact that the dynamic stiffness of the subframe of a certain vehicle model is not up to the standard at some connection points, the dynamic stiffness CAE simulation analysis is carried out to determine the frequency range of insufficient dynamic stiffness and the connection points that need to be optimized.
Technical Paper

Dynamic Switch Control of Steering Modes for 4WID-4WIS Electric Vehicle Based on MOEA/D Optimization

2023-04-11
2023-01-0641
To overcome the shortcoming that vehicles with multiple steering modes need to switch steering modes at parking or very low speeds, a dynamic switch method of steering modes based on MOEA/D (Multi-objective Evolutionary Algorithm Based on Decomposition) was proposed for 4WID-4WIS (Four Wheel Independent Drive-Four Wheel Independent Steering) electric vehicle, considering the smoothness of dynamic switch, the lateral stability of the vehicle and the energy economy of tires. First of all, the vehicle model of 4WID-4WIS was established, and steering modes were introduced and analyzed. Secondly, the conditions for the dynamic switch of steering modes were designed with the goal of stability and safety. According to different constraints, the control strategy was formulated to obtain the target angle of the active wheels. Then aiming at the smoothness of the dynamic switch, the active wheel angle trajectory was constructed based on the B-spline theory.
Technical Paper

A Novel Speed Control Strategy for Electric Vehicles with Optimal Energy Consumption under Multiple Constraints

2023-04-11
2023-01-0697
Autonomous driving related technologies have become a hot topic in academia and industry. Planning control is one of the core technologies of autonomous driving, which is conducive to vehicles safe and efficient driving. This paper proposes a novel optimal speed control algorithm, which considers the power system's energy consumption, the speed limit on the road, and the safe distance of the vehicle in front. An optimal speed control model of “From battery to wheel” energy consumption is established by constructing a performance index function based on the best-fitting formula of motor power, motor speed and torque. Based on the optimal control principle, the fourth-order ordinary differential equation of the speed control model is established, based on the indirect adjoining approach, the speed control model under the restriction of the road speed limit and safe distance of the preceding vehicle is derived and the analytical expression is obtained.
Technical Paper

Design and Structural Parameters Analysis of the Centrifugal Compressor for Automotive Fuel Cell System Based on CFD Method

2023-04-11
2023-01-0499
Electric centrifugal air compressor is one of the most important auxiliary components for the fuel cell engine, which has great impacts on the system efficiency, cost and compactness. However, the centrifugal compressor works at an ultra-high speed for a long time, which poses a great challenge to the lives of motor, bearing and seal. Therefore, reducing the rotating speed of the impeller and maintaining high pressure ratio and high efficiency are important issues for aerodynamic design of the compressor. In this paper, a centrifugal compressor rotor for a 100kW fuel cell system is designed. Aiming at reducing the rotating speed, the influences of three key structural parameters including inlet blade angle, outlet blade angle and blade outlet radius on performance are investigated. The aerodynamic performance of the compressor is predicted using the Reynolds-averaged Navier-Stokes (RANS) equations with computational fluid dynamic (CFD) tools.
Technical Paper

Optimization Design and Performance Verification of the Second Generation Single Motor Plug-in Hybrid System (EDU) of SAIC Motor Vehicle Company

2023-04-11
2023-01-0446
SEAT Department of SAIC Motor Vehicle Company starts innovatively applying the single motor and P2.5 configuration scheme from EDU G2(Electric Drive Unit Generation 2), which consists of six engine gears and four motor gears. EDU G2 is very compact and adaptable through the coupling design. Gear coupling make the engine and motor coordination limited, so as to the high efficiency zone of the engine and the high efficiency zone of the motor cannot match in some working conditions, which affect the performance of the vehicle. Therefore, SEAT developed the second generation of single-motor plug-in hybrid system EDU G2 Plus EDU G2(Electric Drive Unit Generation 2 Plus), which realized the decoupling design of 5 engine gears and 2 motor gears, so that the power output of engine and motor is freely. With excellent power and economic performance, the vehicle has been well received by customers.
Technical Paper

Experimental Study on Effect of State of Charge on Thermal Runaway Characteristics of Commercial Large-Format NCM811 Lithium-Ion Battery

2023-04-11
2023-01-0136
The application of Li(Ni0.8Co0.1Mn0.1)O2 (NCM811) cathode-based lithium-ion batteries (LIBs) has alleviated electric vehicle range anxiety. However, the subsequent thermal safety issues limit their market acceptance. A detailed analysis of the failure evolution process for large-format LIBs is necessary to address the thermal safety issue. In this study, prismatic cells with nominal capacities of 144Ah and 125Ah are used to investigate the thermal runaway (TR) characteristics triggered by lateral overheating. Additionally, TR characteristics under two states of charge (SoCs) (100% and 5%) are discussed. Two cells with 100% SoC exhibit similar characteristics, including high failure temperature, high inhomogeneity of temperature distribution, multi-points jet fire, and significant mass loss. Two cells with 5% SoC demonstrate only a slight rupture of the safety valve and the emission of white smoke.
Technical Paper

A method of Speed Prediction Based on Markov Chain Theory Using Actual Driving Cycle

2022-12-22
2022-01-7081
As a prerequisite for energy management of hybrid vehicles, the results of speed prediction can optimize the performance of vehicles and improve fuel efficiency. Energy management strategies are usually developed based on standard driving cycles, which are too generalized to show the variability of driving conditions in different time and locations. Therefore, this paper constructs a representative driving cycle based on driving data of the corresponding time and location, used as historical information for prediction. We propose a method to construct the driving cycle based on Markov chain theory before constructing the prediction model. In this paper, multiple prediction methods are compared with traditional parametric methods. The difference in prediction accuracy between multiple prediction methods under the single time scale and multiple time scale were compared, which further verified the advantages of the speed prediction method based on Markov chain theory.
Technical Paper

Comprehensively Investigating the Impact of High-Temperature Cyclic Aging on Thermal Runaway Characteristics for Lithium-Ion Batteries

2022-10-28
2022-01-7061
Battery safety issues have severely limited the rapid development and popularization of electric vehicles. Harsh conditions such as high temperature accelerate the degradation of battery safety. To address this issue, a comprehensive analysis of the impact of high-temperature cyclic aging on lithium-ion battery safety is carried out. In the Accelerating Rate Calorimeter, lithium-ion batteries are performed on adiabatic thermal runaway tests and overcharge tests. Regardless of the fully-charged state or half-charged state, in the adiabatic thermal runaway process, high-temperature cyclic aging reduces the characteristic temperature, and the activation energy from the self-heating temperature to thermal runaway triggering temperature decreases. During the overcharge process, high-temperature cyclic aging increases the voltage plateau and the crest voltage before thermal runaway, and their corresponding charging temperature decreases.
X