Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

A Target-Speech-Feature-Aware Module for U-Net Based Speech Enhancement

2024-04-09
2024-01-2021
Speech enhancement can extract clean speech from noise interference, enhancing its perceptual quality and intelligibility. This technology has significant applications in in-car intelligent voice interaction. However, the complex noise environment inside the vehicle, especially the human voice interference is very prominent, which brings great challenges to the vehicle speech interaction system. In this paper, we propose a speech enhancement method based on target speech features, which can better extract clean speech and improve the perceptual quality and intelligibility of enhanced speech in the environment of human noise interference. To this end, we propose a design method for the middle layer of the U-Net architecture based on Long Short-Term Memory (LSTM), which can automatically extract the target speech features that are highly distinguishable from the noise signal and human voice interference features in noisy speech, and realize the targeted extraction of clean speech.
Technical Paper

Performance Testing and Analysis of Multi-Channel Active Control System for Vehicle Interior Noise Using Adaptive Notch Filter

2019-06-05
2019-01-1567
It is considered that slow convergence speed and large calculation amount of commonly used adaptive algorithm in the active control system for vehicle interior noise yield noise reduction performance and hardware requirements problems. In this paper, a 4-channel active control of vehicle interior noise based on adaptive notch filter is established, and road test is carried out to test and analyze the performance of the control system. Firstly, the general mathematic model of the multi-channel active control system based on adaptive notch filter is established. The computational complexity of the algorithm is analyzed and compared with that of the FXLMS algorithm. Secondly, a hardware-in-the-loop test bench based on multi-channel adaptive notch filter is set up, to measure the noise reduction performance of ANC system under various working conditions.
Technical Paper

Optimal Study on the TL of Automotive Door Sealing System Based on the Interior Speech Intelligibility

2018-04-03
2018-01-0672
Wind noise becomes the foremost noise source when a car runs at high speeds. High frequency characteristics of wind noise source and effective performance of seal rubbers for insulating leakage noise make research on the Transmission Loss (TL) of automotive door sealing systems significant. The improvement of TL of automotive door sealing system could effectively decrease the interior noise due to wind noise for vehicles at high speeds. In this study, compression simulation of seal rubbers for an automotive door is performed through a Finite Element (FE) tool firstly. Compressed geometries of the seal rubbers are obtained. Then, based on the final compressed geometries and pre-stress modes of the automotive door seal rubbers, the TL of the whole door sealing system is acquired by hybrid Finite Element - Statistic Energy Analysis (FE-SEA) method. The fluctuating surface pressure on a car body was captured by a Computational Fluid Dynamics (CFD) tool.
Technical Paper

Correlation Analysis of Interior and Exterior Wind Noise Sources of a Production Car Using Beamforming Techniques

2017-03-28
2017-01-0449
Beamforming techniques are widely used today in aeroacoustic wind tunnels to identify wind noise sources generated by interaction between incoming flow and the test object. In this study, a planar spiral microphone array with 120 channels was set out-of-flow at 1:1 aeroacoustic wind tunnel of Shanghai Automotive Wind Tunnel Center (SAWTC) to test exterior wind noise sources of a production car. Simultaneously, 2 reference microphones were set in vehicle interior to record potential sound source signal near the left side view mirror triangle and the signal of driver’s ear position synchronously. In addition, a spherical array with 48 channels was set inside the vehicle to identify interior noise sources synchronously as well. With different correlation methods and an advanced algorithm CLEAN-SC, the ranking of contributions of vehicle exterior wind noise sources to interested interior noise locations was accomplished.
Journal Article

Active Noise Equalization of Vehicle Low Frequency Interior Distraction Level and its Optimization

2016-04-05
2016-01-1303
On the study of reducing the disturbance on driver’s attention induced by low frequency vehicle interior stationary noise, a subjective evaluation is firstly carried out by means of rank rating method which introduces Distraction Level (DL) as evaluation index. A visual-finger response test is developed to help evaluating members better recognize the Distraction Level during the evaluation. A non-linear back propagation artificial neural network (BPANN) is then modeled for the prediction of subjective Distraction Level, in which linear sound pressure RMS amplitudes of five Critical Band Rates (CBRs) from 20 to 500Hz are selected as inputs of the model. These inputs comprise an input vector of BPANN. Furthermore, active noise equalization (ANE) on DL is realized based on Filtered-x Least Mean Square (FxLMS) algorithm that controls the gain coefficients of inputs of trained BPANN.
Technical Paper

Optimal Design of Vehicle Dash and Floor Sound Package Based on Statistical Energy Analysis

2015-04-14
2015-01-0661
An increasing demand for vehicle noise control has been proposed and at the same time, vehicle weight and fuel economy have become critical for the automotive industry. The methodology of statistical energy analysis (SEA) is used to balance both light weight and high noise insulation performance. In this paper, the vehicle dash and floor sound package systems, which are two of the major paths for vehicle interior noise, are studied and optimized by CAE and testing technology. Two types of sound packages which are the conventional insulation system and the lightweight one are chosen for the vehicle dash and floor system. The vehicle dash and floor systems are modeled by SEA and the transmission loss (TL) of the dash and floor system is analyzed, respectively. Several influence factors of the TL are also analyzed, such as sound package coverage, the leaks, etc.
Technical Paper

Subjective and Objective Evaluation of APU Start-Stop NVH for a Range-Extended Electric Vehicle

2015-03-10
2015-01-0047
In recent years, electric vehicle and hybrid vehicle are either on the market or under intensive research and development (R&D). Since the concept of auxiliary power unit (APU) was brought into the automotive industry, the range-extended electric vehicle (ReEV) has become the favor of the worldwide manufacturers. Normally, the APU starts and stops more frequently in response to the control strategy compared with traditional vehicles, which will affect the ride comfort of passengers. Thus, APU start-stop NVH refinement is an important aspect of ReEV R&D. In this paper, a subjective evaluation on a ReEV was performed to quickly diagnose NVH issues firstly. Based on subjective results, the NVH experiment in a semi-anechoic room was carried out to troubleshoot these issues. The accelerations of the APU mounts, the seat track and the steering wheel as well as interior noise level were acquired and analyzed.
X