Refine Your Search

Topic

Search Results

Technical Paper

Cooperative Lane Change Control Based on Null-Space-Behavior for a Dual-Column Intelligent Vehicle Platoon

2023-12-20
2023-01-7064
With the extension of intelligent vehicles from individual intelligence to group intelligence, intelligent vehicle platoons on intercity highways are important for saving transportation costs, improving transportation efficiency and road utilization, ensuring traffic safety, and utilizing local traffic intelligence [1]. However, there are several problems associated with vehicle platoons including complicated vehicle driving conditions in or between platoon columns, a high degree of mutual influence, dynamic optimization of the platoon, and difficulty in the cooperative control of lane change. Aiming at the dual-column intelligent vehicle platoon control (where “dual-column” refers to the vehicle platoon driving mode formed by multiple vehicles traveling in parallel on two adjacent lanes), a multi-agent model as well as a cooperative control method for lane change based on null space behavior (NSB) for unmanned platoon vehicles are established in this paper.
Technical Paper

Research on Low Illumination Image Enhancement Algorithm and Its Application in Driver Monitoring System

2023-04-11
2023-01-0836
The driver monitoring system (DMS) plays an essential role in reducing traffic accidents caused by human errors due to driver distraction and fatigue. The vision-based DMS has been the most widely used because of its advantages of non-contact and high recognition accuracy. However, the traditional RGB camera-based DMS has poor recognition accuracy under complex lighting conditions, while the IR-based DMS has a high cost. In order to improve the recognition accuracy of conventional RGB camera-based DMS under complicated illumination conditions, this paper proposes a lightweight low-illumination image enhancement network inspired by the Retinex theory. The lightweight aspect of the network structure is realized by introducing a pixel-wise adjustment function. In addition, the optimization bottleneck problem is solved by introducing the shortcut mechanism.
Technical Paper

An Interactive Car-Following Model (ICFM) for the Harmony-With-Traffic Evaluation of Autonomous Vehicles

2023-04-11
2023-01-0822
Harmony-with-traffic refers to the ability of autonomous vehicles to maximize the driving benefits such as comfort, efficiency, and energy consumption of themselves and the surrounding traffic during interactive driving under traffic rules. In the test of harmony-with-traffic, one or more background vehicles that can respond to the driving behavior of the vehicle under test are required. For this purpose, the functional requirements of car-following model for harmony-with-traffic evaluation are analyzed from the dimensions of test conditions, constraints, steady state and dynamic response. Based on them, an interactive car-following model (ICFM) is developed. In this model, the concept of equivalent distance is proposed to transfer lateral influence to longitudinal. The calculation methods of expected speed are designed according to the different car-following modes divided by interaction object, reaction distance and equivalent distance.
Technical Paper

Intersection Traffic Safety Evaluation Using Potential Energy Filed Method

2023-04-11
2023-01-0855
The intersection is recognized as the most dangerous area because of the restricted road structures and indeterminate traffic regulations. Therefore, according to the Vehicle-to-everything (V2X) communication, Intelligent Transportation Systems (ITS), and Digital Twin data, we present a potential energy field method to establish the general characteristics of intersection traffic safety, evaluate the safety situation of intersection and assist intersection traffic participants in passing through the intersection safer and more efficient. The resulting potential energy field method is established by the contour line of traffic participants' potential energy, which is constructed as a superposition of disparate energies, such as boundary potential energy, body potential energy, and velocity potential energy. The intersection traffic safety is evaluated by the potential energy field characteristic of simultaneous intersection traffic participants.
Technical Paper

A Method for Building Vehicle Trajectory Data Sets Based on Drone Videos

2023-04-11
2023-01-0714
The research and development of data-driven highly automated driving system components such as trajectory prediction, motion planning, driving test scenario generation, and safety validation all require large amounts of naturalistic vehicle trajectory data. Therefore, a variety of data collection methods have emerged to meet the growing demand. Among these, camera-equipped drones are gaining more and more attention because of their obvious advantages. Specifically, compared to others, drones have a wider field of bird's eye view, which is less likely to be blocked, and they could collect more complete and natural vehicle trajectory data. Besides, they are not easily observed by traffic participants and ensure that the human driver behavior data collected is realistic and natural. In this paper, we present a complete vehicle trajectory data extraction framework based on aerial videos. It consists of three parts: 1) objects detection, 2) data association, and 3) data cleaning.
Technical Paper

Optimal Gearshift Strategy in Inertia Phase of Dual-Clutch Transmissions

2021-04-06
2021-01-0320
Shift quality is an important indicator to measure the performance of dual-clutch transmissions (DCT). To obtain optimal driving comfort and reduce the vehicle jerk as much as possible, this paper proposes an integrated gearshift controller to control the engine and the on-coming clutch in inertia phase. First of all, a dynamic model of DCT during gearshift is established. Key factors determining shift quality are analyzed. In order to reduce the vehicle jerk, a reference trajectory of the engine speed and the derivative of the desired torque transferred by the on-coming clutch in inertia phase are programmed respectively. A back-stepping sliding mode controller (BPSMC) is designed to make the actual engine speed track the reference trajectory and an incremental proportional-integrative (PI) controller is designed to make the actual clutch torque to track the desired clutch torque.
Technical Paper

Reward Function Design via Human Knowledge Graph and Inverse Reinforcement Learning for Intelligent Driving

2021-04-06
2021-01-0180
Motivated by applying artificial intelligence technology to the automobile industry, reinforcement learning is becoming more and more popular in the community of intelligent driving research. The reward function is one of the critical factors which affecting reinforcement learning. Its design principle is highly dependent on the features of the agent. The agent studied in this paper can do perception, decision-making, and motion-control, which aims to be the assistant or substitute for human driving in the latest future. Therefore, this paper analyzes the characteristics of excellent human driving behavior based on the six-layer model of driving scenarios and constructs it into a human knowledge graph. Furthermore, for highway pilot driving, the expert demo data is created, and the reward function is self-learned via inverse reinforcement learning. The reward function design method proposed in this paper has been verified in the Unity ML-Agent environment.
Technical Paper

Multi-target Tracking Algorithm with Adaptive Motion Model for Autonomous Urban Driving

2020-12-29
2020-01-5167
Since situational awareness is crucial for autonomous driving in urban environments, multi-target tracking has become an increasingly popular research topic during the last several years. For autonomous driving in urban environments, cars and pedestrians are the two main types of obstacles, and their motion characteristics are not the same. While in the current related multi-target tracking research, the same motion model (such as Constant Velocity model [CV]) or motion model set (such as CV combined with Constant Acceleration model [CA]) is mostly used to track different types of obstacles simultaneously. Besides, in current research, regular motion models are mostly adopted to track pedestrians, such as CV, CA, and so on, the uncertainty in pedestrian motion is not well considered.
Technical Paper

Decision-Making for Intelligent Vehicle Considering Uncertainty of Road Adhesion Coefficient Estimation: Autonomous Emergency Braking Case

2020-10-29
2020-01-5109
Since data processing methods could not completely eliminate the uncertainty of signals, it is a key issue for stable and robust decision-making for uncertainty tolerance of intelligent vehicles. In this paper, a decision-making for an Autonomous Emergency Braking (AEB) case considering the uncertainty of road adhesion coefficient estimation (RACE) is proposed. Firstly, the 3σ criterion is employed to classify the confidence in order to establish the decision-making mechanism considering the signal uncertainty of RACE. Secondly, the model for AEB with the uncertainty of the road adhesion coefficient estimated is designed based on the Seungwuk Moon model. Thirdly, a CCRs and CCRm scenario was designed to verify the feasibility in reference to the European New Car Assessment Programme (Euro NCAP) standard. Finally, the results of 10,000 cycles test illustrate that the proposed method is stable and could significantly improve the safety confidence both in the CCRs and CCRm scenarios.
Technical Paper

IMM-KF Algorithm for Multitarget Tracking of On-Road Vehicle

2020-04-14
2020-01-0117
Tracking vehicle trajectories is essential for autonomous vehicles and advanced driver-assistance systems to understand traffic environment and evaluate collision risk. In order to reduce the position deviation and fluctuation of tracking on-road vehicle by millimeter-wave radar (MMWR), an interactive multi-model Kalman filter (IMM-KF) tracking algorithm including data association and track management is proposed. In general, it is difficult to model the target vehicle accurately due to lack of vehicle kinematics parameters, like wheel base, uncertainty of driving behavior and limitation of sensor’s field of view. To handle the uncertainty problem, an interacting multiple model (IMM) approach using Kalman filters is employed to estimate multitarget’s states. Then the compensation of radar ego motion is achieved, since the original measurement is under the radar polar coordinate system.
Technical Paper

Drivable Area Detection and Vehicle Localization Based on Multi-Sensor Information

2020-04-14
2020-01-1027
Multi-sensor information fusion framework is the eyes for unmanned driving and Advanced Driver Assistance System (ADAS) to perceive the surrounding environment. In addition to the perception of the surrounding environment, real-time vehicle localization is also the key and difficult point of unmanned driving technology. The disappearance of high-precision GPS signal suddenly and defect of the lane line will bring much more difficult and dangerous for vehicle localization when the vehicle is on unmanned driving. In this paper, a road boundary feature extraction algorithm is proposed based on multi-sensor information fusion of automotive radar and vision to realize the auxiliary localization of vehicles. Firstly, we designed a 79GHz (78-81GHz) Ultra-Wide Band (UWB) millimeter-wave radar, which can obtain the point cloud information of road boundary features such as guardrail or green belt and so on.
Journal Article

A Novel Asynchronous UWB Positioning System for Autonomous Trucks in an Automated Container Terminal

2020-04-14
2020-01-1026
As a critical technology for autonomous vehicles, high precise positioning is essential for automated container terminals to implement intelligent dispatching and to improve container transport efficiency. Because of the unstable performance of global positioning system (GPS) in some circumstances, an ultra wide band (UWB) positioning system is developed for autonomous trucks in an automated container terminal. In this paper, an asynchronous structure is adopted in the system, and a three-dimensional (3D) localization method is proposed. Other than a traditional UWB positioning system with a server, in this asynchronous system, positions are calculated in the vehicle. Therefore, propagation delays from the server to vehicles are eliminated, and the real-time performance can be significantly improved. Traditional 3D localization methods based on time difference of arrival (TDOA) are mostly invalid with anchors in the same plane.
Journal Article

Vehicle Trajectory Prediction Based on Motion Model and Maneuver Model Fusion with Interactive Multiple Models

2020-04-14
2020-01-0112
Safety is the cornerstone for Advanced Driver Assistance Systems (ADAS) and Autonomous Driving Systems (ADS). To assess the safety of a traffic situation, it is essential to predict motion states of traffic participants in the future with mathematic models. Accurate vehicle trajectory prediction is an important prerequisite for reasonable traffic situation risk assessment and appropriate decision making. Vehicle trajectory prediction methods can be generally divided into motion model based methods and maneuver model based methods. Vehicle trajectory prediction based on motion models can be accurate and reliable only in the short term. While vehicle trajectory prediction based on maneuver models present more satisfactory performance in the long term, these maneuver models rely on machine learning methods. Abundant data should be collected to train the maneuver recognition model, which increases complexity and lowers real-time performance.
Journal Article

Nonlinear Model Predictive Control of Autonomous Vehicles Considering Dynamic Stability Constraints

2020-04-14
2020-01-1400
Autonomous vehicle performance is increasingly highlighted in many highway driving scenarios, which leads to more priorities to vehicle stability as well as tracking accuracy. In this paper, a nonlinear model predictive controller for autonomous vehicle trajectory tracking is designed and verified through a real-time simulation bench of a virtual test track. The dynamic stability constraints of nonlinear model predictive control (NLMPC) are obtained by a novel quadrilateral stability region criterion instead of the conventional phase plane method using the double-line region. First, a typical lane change scene of overtaking is selected and a new composited trajectory model is proposed as a reference path that combines smoothness of sine wave and comfort of linear functional path. Reference lateral velocity, azimuth angle, yaw rate, and front wheel steering angle are subsequently taken into account.
Technical Paper

An Outer Loop of Trajectory and an Inner Loop of Steering Angle for Trajectory Tracking Control of Automatic Lane Change System

2019-11-04
2019-01-5029
Automatic Lane Change (ALC) function is an important step to promote the currently popular Advanced Driver Assistance Systems (ADAS) within a single lane. The key issue for ALC is accurate steering angle and trajectory tracking during the lane changing process. In this paper, an MPC controller with a receding horizon is designed to track the desired trajectory. During the tracking process, other objectives such as safety and smoothness are considered. Considering of the practical mechanism and parameter uncertainties, an SMC controller is designed to track the target steering angle. For validation, a Hardware-in-the-Loop (HIL) experiment platform is established, and experiments of different control algorithms under different conditions are carried out successively. Comparisons of the experiment results of MPC+SMC and PID+SMC schemes indicate that both the trajectory error and the steering angle error of the former combination are smaller.
Technical Paper

Analysis of the Driver’s Breaking Response in the Safety Cut-in Scenario Based on Naturalistic Driving

2019-11-04
2019-01-5053
For the personification of automotive vehicle function performance under common traffic scenarios, analysis of human driver behavior is necessary. Based on China Field Operational Test (China-FOT) database of China Natural Driving Study project, this paper studies the driver's response in the common cut-in scenario. A total of 266 cut-in cases are selected by manual interception of driving recorder video. The relevant traffic environment characteristics are also extracted from video, including light conditions, road conditions, scale and lateral position of cut-in vehicle, etc. Dynamic information is decoded form CAN, such as speed, acceleration and so on. Then image processing results, such as relative speed and distance of cut-in and subject vehicles, are calculated. Statistical results based on above information show the response type and distribution of human driver: the behavior of keeping lane is 96.24%, in which the ratio of braking response is 51.13%.
Technical Paper

Driver Behavior Classification under Cut-In Scenarios Using Support Vector Machine Based on Naturalistic Driving Data

2019-04-02
2019-01-0136
Cut-in scenario is common in traffic and has potential collision risk. Human driver can detect other vehicle’s cut-in intention and take appropriate maneuvers to reduce collision risk. However, autonomous driving systems don’t have as good performance as human driver. Hence a deeper understanding on driving behavior is necessary. How to make decisions like human driver is an important problem for automated vehicles. In this paper, a method is proposed to classify the dangerous cut-in situations and normal ones. Dangerous cases were extracted automatically from naturalistic driving database using specific detection criteria. Among those cases, 70 valid dangerous cut-in cases were selected manually. The largest deceleration of subject vehicle is over 4 m/s2. Besides, 249 normal cut-in cases were extracted by going through video data of 2000km traveled distance. In normal driving cases, subject vehicle may brake or keep accelerating and the largest deceleration was less than 3 m/s2.
Technical Paper

Naturalistic Driving Behavior Analysis under Typical Normal Cut-In Scenarios

2019-04-02
2019-01-0124
Cut-in scenarios are common and of potential risk in China but Advanced Driver Assistant System (ADAS) doesn’t work well under such scenarios. In order to improve the acceptance of ADAS, its reactions to Cut-in scenarios should meet driver’s driving habits and expectancy. Brake is considered as an express of risk and brake tendency in normal Cut-in situations needs more investigation. Under critical Cut-in scenarios, driver tends to brake hard to eliminate collision risk when cutting in vehicle right crossing lane. However, under less critical Cut-in scenarios, namely normal Cut-in scenarios, driver brakes in some cases and takes no brake maneuver in others. The time when driver initiated to brake was defined as key time. If driver had no brake maneuver, the time when cutting-in vehicle right crossed lane was defined as key time. This paper focuses on driver’s brake tendency at key time under normal Cut-in situations.
Technical Paper

Analysis of the Correlation between Driver's Visual Features and Driver Intention

2019-04-02
2019-01-1229
Driver behaviors provide abundant information and feedback for future Advanced Driver Assistance Systems (ADAS). Driver’s eye and head may present some typical movement patterns before executing driving maneuvers. It is possible to use driver’s head and eye movement information for predicting driver intention. Therefore, to determine the most important features related to driver intention has attracted widespread research interests. In this paper, a method to analyze the correlation between driver’s visual features and driver intention is proposed, aiming to determine the most representative features for driver intention prediction. Firstly, naturalistic driving experiment is conducted to collect driver’s videos during executing lane keeping and lane change maneuvers. Then, driver’s head and face visual features are extracted from those videos. By using boxplot and independent samples T-test, features which have significant correlation with driver intention are found.
Technical Paper

Driver Lane Keeping Characteristic Indices for Personalized Lane Keeping Assistance System

2017-09-23
2017-01-1982
In the recent years, the interaction between human driver and Advanced Driver Assistance System (ADAS) has gradually aroused people’s concern. As a result, the concept of personalized ADAS is being put forward. As an important system of ADAS, Lane Keeping Assistance System (LKAS) also attracts great attention. To achieve personalized LKAS, driver lane keeping characteristic (DLKC) indices which could distinguish different driver lane keeping behavior should be researched. However, there are few researches on DLKC indices for personalized LKAS. Although there are many researches on modeling driver steering behavior, these researches are not sufficient to obtain DLKC indices. One reason is that most of researches are for double lane change behavior which is different from driver lane keeping behavior. The other reason is that the researches on driver lane keeping behavior only provide model structure and rarely discuss identification procedure such as how to select suitable data.
X