Refine Your Search

Topic

Author

Search Results

Journal Article

Coupled-SEA Application to Full Vehicle with Numerical Turbulent Model Excitation for Wind Noise Improvement

2021-08-31
2021-01-1046
Wind noise is becoming a higher priority in the automotive industry. Several past studies investigated whether Statistical Energy Analysis (SEA) can be utilized to predict wind noise. Because wind noise analysis requires both radiation and transmission modeling in a wide frequency band, turbulent-structure-acoustic-coupled-SEA is being used. Past research investigated coupled-SEA’s benefit, but the model is usually simplified to enable easier consideration on the input side. However, the vehicle is composed of multiple interior parts and possible interior countermeasure consideration is needed. To enable this, at first, a more detailed coupled-SEA model is built from the acoustic-SEA model which has a larger number of degrees of freedom for the interior side. Then, the model is modified to account for sound radiation effects induced by turbulent and acoustic pressure.
Technical Paper

Application of Dynamic Mode Decomposition to Influence the Driving Stability of Road Vehicles

2019-04-02
2019-01-0653
The recent growth of available computational resources has enabled the automotive industry to utilize unsteady Computational Fluid Dynamics (CFD) for their product development on a regular basis. Over the past years, it has been confirmed that unsteady CFD can accurately simulate the transient flow field around complex geometries. Concerning the aerodynamic properties of road vehicles, the detailed analysis of the transient flow field can help to improve the driving stability. Until now, however, there haven’t been many investigations that successfully identified a specific transient phenomenon from a simulated flow field corresponding to driving stability. This is because the unsteady flow field around a vehicle consists of various time and length scales and is therefore too complex to be analyzed with the same strategies as for steady state results.
Technical Paper

Friction Reduction Effect of the New Concept Bearing with Partial Twin Grooves in Cold Condition

2015-09-01
2015-01-2038
Engine friction reduction is an effective means to improve fuel consumption. Fluid friction reduction of main bearing is examined for engine friction reduction in cold condition. As one of the examinations, it was focused on low temperature of lubricating oil in the early stage during engine cold start. In hydrodynamic lubrication, the oil film temperature is maintained by balance between heat generation and heat transfer. The heat generation is generated by shear of lubricating oil. The factors of the heat transfer, the following elements are considered as follows, A) The heat transfer to a crank shaft, B) The heat transfer to a bearing, C) The heat transfer by convection. If the heat generation is constant, oil film temperature is increased by reduction of heat transfer. It is considered that the reduction of oil leakage and reduction of the heat transfer by convection is equivalent.
Technical Paper

Numerical Modeling of the Contamination of Engine Oil by Fuel Combustion Byproducts

2014-10-13
2014-01-2574
This paper focuses on the fuel contribution to crankcase engine oil degradation in gasoline fueled engines in view of insoluble formation. The polymerization of degraded fuel is responsible for the formation of insoluble which is considered as a possible cause of low temperature sludge in severe vehicle operating conditions. The main objective of the study is to understand the mechanism of formation of partially oxidized compounds from fuel during the combustion process, before their accumulation in the crankcase oil. A numerical method has been established to calculate the formation of partially oxidized compounds in spark ignition engines directly, by using 3D CFD. To further enable the possibility of running a large number of simulations with a realistic turn-around time, a coupled approach of 3D CFD (with simplified chemical mechanism) and 0D Kinetics (with full chemical mechanism) is proposed here.
Technical Paper

Development of In-cylinder Mixture and Flame Propagation Distribution Measurement Device with Spark Plug Type Sensor

2011-08-30
2011-01-2045
A new method to measure in-cylinder flame propagation and mixture distribution has been developed. The distribution is derived from analyzing the temporal history of flame spectra of CH* and C2*, which are detected by a spark plug type sensor with multi-optical fibers. The validity of this method was confirmed by verifying that the measurement results corresponded with the results of high speed flame visualization and laser induced fluorescence (LIF) measurement. This method was also applied to analysis of cyclic combustion fluctuation on start-up in a direct injection spark ignition (DISI) engine, and its applicability was confirmed.
Technical Paper

3-D CFD Analysis of CO Formation in Diesel Combustion - The use of intake air throttling to create reducing atmospheres for NSR catalysts -

2011-08-30
2011-01-1841
The efficiency of the NOx Storage and Reduction (NSR) catalysts used in the aftertreatment of diesel engine exhaust gases can potentially be increased by using reactive reductants such as CO and H₂ that are formed during in-cylinder combustion. In this study, a multi-dimensional computational fluid dynamics (CFD) code coupled with complex chemical analysis was used to study combustion with various fuel after-injection patterns. The results obtained will be useful in designing fuel injection strategies for the efficient formation of CO.
Technical Paper

High-Pressure Hydrogen-Absorbing Alloy Tank for Fuel Cell Vehicles

2010-04-12
2010-01-0851
Multi-cylinder hydrogen-absorbing alloy tanks for fuel cell vehicles have 10 to 40 metallic cylinders that are bundled and filled with hydrogen-absorbing alloy. In this system, the cylinders themselves act as a heat exchanger and the working pressure is lowered to 10 to 20 MPa compared with high-pressure MH tanks. Moreover, both heat conduction and mass reduction can be achieved by reducing the wall thickness of the cylinders. A model verification experiment was conducted using a one-quarter-scale prototype of a full size tank, and a conduction simulation model verified in the experiment was used to predict the performance of the full size tank. Results showed that it is possible to fill the tank with hydrogen to 80% of its capacity in a five-minute filling time, although issues related to heat conductivity performance require improvement. Accordingly, it may be possible to adopt this tank as part of a system if the storage amount of the hydrogen-absorbing alloy can be increased.
Technical Paper

Quantitative Analysis of the Relation between Flame Structure and Turbulence in HCCI Combustion by Two-Dimensional Temperature Measurement

2008-04-14
2008-01-0061
The structure of HCCI (homogeneous charge compression ignition) combustion flames was quantitatively analyzed by measuring the two-dimensional gas temperature distribution using phosphor thermometry. It was found from the relation between a turbulent Reynolds number and Karlovitz number that, when compared with the flame propagation in an S.I. engine, HCCI combustion has a wider flame structure with respect to the turbulence scale. As a result of our experimentation for the influence of low temperature reaction (LTR) using two types of fuel, it was also confirmed that different types of fuel produce different histories of flame kernel structure.
Technical Paper

Development of Hybrid System for SUV

2005-04-11
2005-01-0273
Toyota Hybrid System (THS), that combines a gasoline engine and an electric motor was installed in the Prius, which was introduced in 1997 as the world's first mass-produced hybrid passenger car, and was vastly improved in 2003. The new Prius gained a status of highly innovative and practical vehicle. In 2005, combined with a V6 engine, THS had a further evolution as a Hybrid System for SUV, which was installed in the RX400h and Highlander Hybrid to be introduced into the world. This report will explain “new THS” which achieved both V8 engine power performance and compact class fuel economy, while securing the most stringent emission standard, SULEV.
Technical Paper

Plate Type Methanol Steam Reformer Using New Catalytic Combustion for a Fuel Cell

2002-03-04
2002-01-0406
Methanol steam reforming, which is an endothermic reaction, needs some heating. Both methanol conversion ratio and carbon monoxide (CO) concentration increase when temperature is elevated. As CO poisons a typical polymer electrolyte of a fuel cell, the relationship between methanol conversion ratio and CO concentration is a trade-off one. It was found from preliminary researches that the reforming reaction speed is controlled by heat transfer rate at large methanol flow rate, where methanol conversion ratio becomes lower and CO concentration becomes higher. Therefore it is necessary to develop a new methanol reforming concept that provides stable combustion for heating and enhanced heat transfer for improving the trade-off relationship and making a compact reformer. Reforming catalyst using metal honeycomb support and a new catalytic combustion were applied to a new concept plate type methanol steam reformer, which is used in a fuel cell of 3 kW-class electric generation.
Technical Paper

Fuel Spray Simulation of Slit Nozzle Injector for Direct-Injection Gasoline Engine

2002-03-04
2002-01-1135
In direct-injection (DI) gasoline engines, spray characteristics greatly affect engine combustion. For the rapid development of new gasoline direct-injectors, it is necessary to predict the spray characteristics accurately by numerical analysis based on the injector nozzle geometry. In this study, two-phase flow inside slit nozzle injectors is calculated using the volume of fluid method in a three-dimensional CFD. The calculation results are directly applied to the boundary conditions of spray calculations, of which the submodels are recently developed to predict spray formation process in direct injection gasoline engines. The calculation results are compared with the experiments. Good agreements are obtained for typical spray characteristics such as spray shape, penetration and Sauter mean diameter at both low and high ambient pressures. Two slit nozzle injectors of which the slit thickness is different are compared.
Technical Paper

Newly Developed AZ Series Engine

2001-03-05
2001-01-0327
The design of the newly developed Toyota AZ series 4 cylinder engine has been optimized through both simulations and experiments to improve heat transfer, cooling water flow, vibration noise and other characteristics. The AZ engine was developed to achieve good power performance and significantly reduced vibration noise. The new engine meets the LEV regulations due to the improved combustion and optimized exhaust gas flow. A major reduction in friction has resulted in a significant improvement in fuel economy compared with conventional models. It also pioneered a newly developed resin gear drive balance shaft.
Technical Paper

Numerical Study of Mixture Formation and Combustion Processes in a Direct Injection Gasoline Engine with Fan-Shaped Spray

2001-03-05
2001-01-0738
Numerical 3-D simulations are performed for the improvement of the new direct injection gasoline engine. A solution based local grid refinement method has been developed in order to reduce the CPU time. This method has been incorporated into the CFD program (STAR-CD) with in-house spray and combustion models. Calculation results were compared with the experimental data taken by the LIF technique, and good agreement was obtained for the mixture formation and combustion processes. Some calculations were carried out for the fuel-air mixture formation process during late injection stratified combustion and the following results were obtained. The unburnt fuel has a tendency to remain in the side of the piston cavity at the latter part of the combustion period. To reduce the amount of unburnt fuel, it was shown that the combination of a thin thickness fan spray and compact cavity forms a spherical mixture, suitable for combustion.
Technical Paper

Development of New Concept Iridium Plug

2001-01-05
2001-01-1201
In the field of automotive gasoline engines, new products aiming at greater fuel economy and cleaner exhaust gases are under development with the aim of preventing environmental destruction. Severe ignition environments such as lean combustion, stronger charge motion, and large quantities of EGR require ever greater combustion stability. In an effort to meet these requirements, an iridium plug has been developed that achieves high ignitability and long service life through reduction of its diameter, using a highly wear-resistant iridium alloy as the center electrode.(1)(2) Recently, direct injection engines have attracted attention. In stratified combustion, a feature of the direct injection engine, the introduction of rich air-fuel mixtures in the vicinity of the plug ignition region tends to cause carbon fouling. This necessitates plug carbon fouling resistance.
Technical Paper

JamaS Study on the Location of In-Vehicle Displays

2000-11-01
2000-01-C010
JAMA (Japan Automobile Manufactures Association, Inc.)'s guideline for car navigation systems is being decided on displayed the amount of information while driving. The position of a display and the estimated equation, which could be applied from a passenger car to a heavy truck, was studied. The evaluation index was the distance which drivers could become aware of a preceding vehicle by their peripheral vision, because car accidents while drivers glance at an in- vehicle display are almost the rear end collisions. As the results, the lower limit of a position of an in-vehicle display for a passenger car was 30 degrees, and a heavy truck was 46 degrees.
Technical Paper

Recycling Technology of Surface Material for Interior Trims

2000-03-06
2000-01-0741
Two-layered surface materials composed of a thermoplastic olefin elastomer (TPO) skin and a cross-linked polypropylene (PP)foam are increasingly replacing the conventional PVC skin/PVC foam for interior trims. In the past, recycled material obtained by melt-blending TPO skin and PP foam could not be re-used for TPO skin because of its appearance. A new recycling technology using the reaction biaxial extruder with a reaction agent can decompose the network structure of PP foam. As a result, PP foam is dispersed into TPO uniformly and the recycled material has properties and an appearance similar to virgin TPO. These new properties may allow the application of the recycled material as a surface material.
Technical Paper

Toyota's U340E Four-speed Automatic Transaxle

2000-03-06
2000-01-1147
TOYOTA has designed a new family of automatic transaxles named the “Super ECT”. These are the next generation of automatic transaxles (AT), for FWD passenger cars. The aim of this development was compactness, lightness, and improvements in fuel economy and shift quality. There are several kinds of transaxles included in this group to match each of the FWD passenger cars and engines. The “U340E,” a four-speed automatic transaxle, has been developed as one member of this family. This is one of the most compact and light AT in its class, and has greatly contributed to the fuel economy of vehicles. This paper will give an overview of the “Super ECT” and the major features and performance of the U340E.
Technical Paper

Objective Evaluation of Exciting Engine Sound in Passenger Compartment During Acceleration

2000-03-06
2000-01-0177
This paper describes an objective evaluation method for the engine sound quality in a car interior during acceleration. Two principal factors, pleasantness and raciness, of the engine sound quality were found with a subjective evaluation test in a laboratory. Psycho-acoustic indexes corresponding to these factors were revealed by investigating the correlation among subjective ratings and acoustic characteristics. The index of raciness was originally proposed for the assessment of sound that makes driving fun when the sound is emphasized. We propose that the design of engine sound is required with consideration of the balance between pleasantness and raciness.
Technical Paper

Prediction Technique for the Lubricating Oil Temperature in Manual Transaxle

1999-03-01
1999-01-0747
A prediction technique for the lubricating oil temperature in a manual transaxle was developed. Using this technique, the effects of heat transfer enhancement and heat generation decrease, etc., on the oil temperature reduction can be estimated. The heat generation in a manual transaxle is caused by lubricating oil stirring, friction and gear meshing. The heat transfer and flow characteristics are thus very complicated under the two-phase flow of the oil and air induced by rotating gears. It is necessary for the development of the prediction technique to model the heat transfer process in a manual transaxle. The experiments measuring of heat generation, heat flux and the air flow velocity distribution around the manual transaxle were conducted to get information for modeling the heat transfer process. A flow visualization of two-phase flow in the manual transaxle was also conducted.
Technical Paper

Anti-Reflection (AR) Coating Meter

1999-03-01
1999-01-0897
So far in conventional automotive meter, reflection of the incident light on a cover glass is prevented by a hood and a curved cover glass. Anti-reflection coating (hereafter abbreviated as AR coating) on the surface of cover glass can offer a meter without the hood. Thin films of AR coating are uniformly deposited on a large polymethylmethacrylate substrate in an ambient atmosphere by sol-gel dip coating and cured at low temperature. The AR coated panel shows a very low reflectance. In addition, the AR coating has a high reliability for the instrument panels of automobiles. The AR coating meter offers new instrument panel design for Toyota Prius.
X