Refine Your Search

Search Results

Viewing 1 to 11 of 11
Journal Article

Color and Height Characteristics of Surrogate Grass for the Evaluation of Vehicle Road Departure Mitigation Systems

2019-04-02
2019-01-1026
In recent years Road Departure Mitigation Systems (RDMS) is introduced to the market for avoiding roadway departure collisions. To support the performance testing of the RDMS, the most commonly seen road edge, grass, is studied in this paper for the development of standard surrogate grass. This paper proposes a method for defining the resembling grass color and height features due to significant variations of grass appearances in different seasons, temperatures and environments. Randomly selected Google Street View images with grass road edges are gathered and analyzed. Image processing techniques are deployed to obtain the grass color distributions. The height of the grass is determined by referencing the gathered images with measured grass heights. The representative colors and heights of grass are derived as the specifications of surrogate grass for the standard evaluation of RDMS.
Technical Paper

The Color Specification of Surrogate Roadside Objects for the Performance Evaluation of Roadway Departure Mitigation Systems

2018-04-03
2018-01-0506
Roadway departure mitigation systems for helping to avoid and/or mitigate roadway departure collisions have been introduced by several vehicle manufactures in recent years. To support the development and performance evaluation of the roadway departure mitigation systems, a set of commonly seen roadside surrogate objects need to be developed. These objects include grass, curbs, metal guardrail, concrete divider, and traffic barrel/cones. This paper describes how to determine the representative color of these roadside surrogates. 24,762 locations with Google street view images were selected for the color determination of roadside objects. To mitigate the effect of the brightness to the color determination, the images not in good weather, not in bright daylight and under shade were manually eliminated. Then, the RGB values of the roadside objects in the remaining images were extracted.
Technical Paper

The i-REAL Personal Mobility Vehicle

2011-05-17
2011-39-7242
The need for small personal mobility vehicles is growing as urbanization, the aging of society, traffic congestion, and parking become major issues, particularly in inner-city areas. The aging of society also means that more short trips within communities will be made. The i-REAL personal mobility vehicle is a next-generation single-passenger electric vehicle that enables the driver to move around town using a smaller amount of energy. This compact EV has three wheels: two front wheels driven by in-wheel motors and one rear wheel. According to the driver's needs, the i-REAL switches driving modes by changing its wheelbase. It can go slowly, allowing the driver to meet the eyes of passers-by when driving in parks, on sidewalks, or inside shopping malls. When on the road, it can lower its height and drive quickly like a bicycle or motorcycle. The body of the i-REAL leans automatically based on the speed and the turn angle to maintain the balance of the vehicle for any driver.
Technical Paper

Fatigue Life Prediction on Rough Road Using Full Vehicle Co-simulation Model with Suspension Control

2010-04-12
2010-01-0952
A full vehicle multi-body dynamic (MBD) model with suspension control system is developed for fatigue life prediction under rough road condition. The model consists of tires, a trimmed body, heavy attached parts, powertrain, suspension, joints, and a driver model, and includes a suspension control system that varies characteristics of the suspension according to the rough road inputs. For tires, a commercial MBD tire model is employed with identifiable parameters. The models are simulated to run on the optically measured road surface of the proving ground. Apart from the trimmed body, several important heavy attached parts are modeled separately, that represent dynamic behavior that induces complex body input load. These parts, along with suspension and powertrain systems are connected to the body using nonlinear elements such as joints, springs, and dampers. Contact conditions are used to represent mount bushing, hood lock, stopper rubber, etc.
Technical Paper

Development of Torsion Beam Rear Suspension with Toe Control Links

1999-03-01
1999-01-0045
Attaining optimum balance between longitudinal compliance and sideforce compliance steer in a torsion beam suspension system is a challenging task. We developed a suspension in which the longitudinal compliance is almost doubled and the side force compliance steer amount is improved by using the link effect of toe control links. This suspension system has been developed to realize excellent controllability, stability, riding comfort, and road noise performance.
Technical Paper

Joint PAJ/JAMA Project - Development of a JASO Gasoline Bench Engine Test for Measuring CCDs

1997-10-01
972837
Detergent additives in automotive gasoline fuel are mainly designed to reduce deposit formation on intake valves and fuel injectors, but it has been reported that some additives may contribute to CCD formation. Therefore, a standardized bench engine test method for CCDs needs to be developed in response to industry demands. Cooperative research between the Petroleum Association of Japan (PAJ) and the Japan Automobile Manufacturers Association, Inc. (JAMA), has led to the development of a 2.2L Honda engine dynamometer-based CCD test procedure to evaluate CCDs from fuel additives. Ten automobile manufacturers, nine petroleum companies and the Petroleum Energy Center joined the project, which underwent PAJ-JAMA round robin testing. This paper describes the CCD test development activities, which include the selection of an engine and the determination of the optimum test conditions and other test criteria.
Technical Paper

Improvement of Ride Comfort by Continuously Controlled Damper

1992-02-01
920276
The object of this study is to investigate the possibility of improving ride comfort, and develop a new damping control system. We supposed and analyzed the ideal damping control for vehicle suspension system using optimal control strategy. The parameter study shows the effect of reducing vehicle acceleration from road excitation. To achieve the same performance with a more simple and lower cost control strategy, we introduce another control strategy called ‘Skyhook model’ proposed by D.Karnopp. Continuously damping control system is developed based on this to avoid some problems that might be caused in the case of a two-stage switching system. Further more, variable control gain depends on vehicle vibration circumstances introduced to realize the adaptation of various road conditions. Using computer simulation and testing the experimental vehicle, effectiveness of this system is evident and the possibility of ride comfort improvement is verified by using this control.
Technical Paper

Automobile Navigation System Using Individual Communication Beacon

1991-10-01
912758
A communication system that uses roadside beacons to broadcast road and traffic information and private messages to vehicles has been developed. The system, called Road/Automobile Communication System (RACS), was the result of a joint research project involving the Public Works Research Institute and 25 private-sector corporations. This paper contains an outline of RACS and of an onboard system developed by TOYOTA and presents the results of field tests conducted in the Tokyo area. The results not only verify the capability of the RACS system and the effectiveness of the in-vehicle equipment but also indicate the potential of such a beacon based network to improve traffic jam and driving safety whilst providing enhanced communication facilities without increasing radio-wave congestion.
Technical Paper

Development and Application of Simulation for Low-Frequency Boom Noise and Ride Comfort

1990-09-01
901753
This paper investigates a new approach to the quantification technique for road induced vehicle interior noise and vibration within the frequency range up to 40 Hz. By employing the least squares method, both vertical and fore-aft load to each wheel were quantified using transfer function and actual vibration response of the vehicle driven on a road. The coupled structural-acoustic vehicle model using the finite element method, which is also detailed in this paper, is combined with the quantified input load to simulate road induced interior noise and vibration response. Experimental verification, which indicates reasonable accuracy of the simulation, and an application for the prototype development are also presented.
Technical Paper

Power steering System with Travelling Condition Judgement Function

1989-09-01
891980
This paper describes a system which, in order to give a more natural and pleasing steering feeling, has incorporated vehicle speed and steering angle sensors in a hydraulic reaction type power steering system for control in accordance with the frequency of steering angles, control in accordance with vehicle speed and steering angle and control in accordance with forward and reverse acceleration. This system enables the steering characteristics to be matched to the road conditions; light steering for driving in the city, or increased responsiveness for winding mountain roads or sporty driving. The aims in developing this system and details of the method of control are described.
Technical Paper

Prediction of Brake Pad Wear/Life by Means of Brake Severity Factor As Measured on a Data Logging System

1984-02-01
840358
The use of brakes on public roads depends on traffic conditions and the road itself. In order to research into brake usage on various roads and under various conditions, a micro-computer data logging system was developed. The recorded data were analyzed by a large computer and the severity of brake usages was defined. The relationship between the severity and the brake disc rotor temperature was derived, and used to predict brake pad wear/life. The predicted wear coincided fairly clossly with measured wear.
X