Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Technical Paper

The Large Omnidirectional Child (LODC) ATD: Biofidelity Comparison with the Hybrid III 10 Year Old

2016-11-07
2016-22-0017
When the Hybrid III 10-year old (HIII-10C) anthropomorphic test device (ATD) was adopted into Code of Federal Regulations (CFR) 49 Part 572 as the best available tool for evaluating large belt-positioning booster seats in Federal Motor Vehicle Safety Standard (FMVSS) No. 213, NHTSA stated that research activities would continue to improve the performance of the HIII-10C to address biofidelity concerns. A significant part of this effort has been NHTSA’s in-house development of the Large Omnidirectional Child (LODC) ATD. This prototype ATD is comprised of (1) a head with pediatric mass properties, (2) a neck that produces head lag with Z-axis rotation at the atlanto-occipital joint, (3) a flexible thoracic spine, (4) multi-point thoracic deflection measurement capability, (5) skeletal anthropometry representative of a seated child, and (6) an abdomen that can directly measure belt loading.
Technical Paper

Analytical Tire Forces and Moments Model With Validated Data

2007-04-16
2007-01-0816
Tire models used in vehicle dynamics simulation and tire-related research rely basically on curve fitted experimental data and empirical adjustments of theoretical models. The complexity of tire mechanics has limited the development of a complete and reasonable analytical force theory. This paper validates an analytical tire model recently developed by the author. This theoretical model uses physical parameters: lateral and longitudinal stiffnesses, aligning moment pneumatic trail, overturning moment arm, lateral force relaxation length, and friction properties. These are standard mechanical properties that characterize the force generating capacity of tires. The validation procedure compares the theoretical ground forces and moments with experimental data. Tire data measured on a flat track tire testing machine are used in this validation. It covers the full range of longitudinal, lateral, and combined slips.
Technical Paper

Parameter Determination and Vehicle Dynamics Modeling for The National Advanced Driving Simulator of the 2006 BMW 330i

2007-04-16
2007-01-0818
The paper discusses the development of a model for the 2006 BMW 330i for the National Advanced Driving Simulator's (NADS) vehicle dynamics simulation, NADSdyna. The front and rear suspensions are independent strut and link type suspensions modeled using recursive rigid-body dynamics formulations. The suspension springs and shock absorbers are modeled as force elements. The paper includes parameters for front and rear semi-empirical tire models used with NADSdyna. Longitudinal and lateral tire force plots are also included. The NADSdyna model provides state-of-the-art high-fidelity handling dynamics for real-time hardware-in-the-loop simulation. The realism of a particular model depends heavily on how the parameters are obtained from the actual physical system. Complex models do not guarantee high fidelity if the parameters used were not properly measured. Methodologies for determining the parameters are detailed in this paper.
Technical Paper

Closed Loop Steering System Model for the National Advanced Driving Simulator

2004-03-08
2004-01-1072
This paper presents the details of the model for the physical steering system used on the National Advanced Driving Simulator. The system is basically a hardware-in-the-loop (steering feedback motor and controls) steering system coupled with the core vehicle dynamics of the simulator. The system's torque control uses cascaded position and velocity feedback and is controlled to provide steering feedback with variable stiffness and dynamic properties. The reference model, which calculates the desired value of the torque, is made of power steering torque, damping function torque, torque from tires, locking limit torque, and driver input torque. The model also provides a unique steering dead-band function that is important for on-center feel. A Simulink model of the hardware/software is presented and analysis of the simulator steering system is provided.
Technical Paper

Modeling and Implementation of Steering System Feedback for the National Advanced Driving Simulator

2002-05-07
2002-01-1573
This paper presents a real-time steering system torque feedback model used in the National Advanced Driving Simulator (NADS). The vehicle model is based on real-time recursive multi-body dynamics augmented with vehicle subsystems models including tires, power train, brakes, aerodynamics and steering. The steering system feel is of paramount importance for the fidelity of the simulator. The driver has to feel the appropriate torque as he/she steers the vehicle. This paper presents a detailed mathematical model of the steering physics from low-speed stick-slip to high-speed states. On-center steering weave handling and aggressive lane change inputs are used to validate the basic mathematical predictions. This validation is objective and open loop, and was done using field experiments.
Technical Paper

Large school bus safety restraint evaluation

2001-06-04
2001-06-0158
This paper describes ongoing research conducted by the National Highway Traffic Safety Administration (NHTSA) to evaluate the potential of safety restraints on large school buses. School bus transportation is one of the safest forms of transportation in the United States. Large school buses provide protection because of their visibility, size, and weight, as compared to other types of motor vehicles. Additionally, they are required to meet minimum Federal Motor Vehicle Safety Standards (FMVSS) mandating compartmentalized seating, emergency exits, roof crush and fuel system integrity, and minimum bus body joint strength.
Technical Paper

PERFORMANCE EVALUATION OF DUAL STAGE PASSENGER AIR BAG SYSTEMS

2001-06-04
2001-06-0190
A research program was initiated to evaluate the performance of prototype dual stage passenger air bags in terms of both restraint system performance and deployment aggressivity for different size occupants. Variations in inflator partitions, vent hole diameter sizes, and deployment timing were examined. High speed unbelted sled tests were conducted with both 50th percentile male and 5th percentile female Hybrid III adult dummies at 48 kmph; and belted sled tests were conducted at 56 kmph. Low risk deployment tests with child dummies were conducted to evaluate air bag aggressivity. Overall, it was concluded that the dual stage air bag systems under evaluation had improved performance over the baseline single stage systems in terms of providing high speed protection while reducing aggressivity to out-of-position occupants; however, some dual stage systems may require additional occupant detection methodologies to suppress or control inflation.
Technical Paper

Characterization of CIREN

2001-06-04
2001-06-0024
This paper focuses on the overall structure of the Crash Injury Research and Engineering Network (CIREN), how data are collected, and what makes it unique. It discusses how it can be used to expand and enhance the information in other databases. CIREN is a collaborative effort to conduct research on crashes and injuries at nine Level 1 Trauma Centers which are linked by a computer network. Researchers can review data and share expertise, which will lead to a better understanding of crash injury mechanisms and the design of safer vehicles. CIREN data are being used in outreach and education programs on motor vehicle safety. CIREN outreach and education has already been credited with lifesaving information dissemination.
Technical Paper

Simulations of large school bus safety restraints~NHTSA

2001-06-04
2001-06-0226
This paper describes computer crash simulations performed by the National Highway Traffic Safety Administration (NHTSA) under the current research and testing activities on large school bus safety restraints. The simulations of a frontal rigid barrier test and comparative dynamic sled testing for compartmentalization, lap belt, and lap/shoulder belt restraint strategies are presented. School bus transportation is one of the safest forms of transportation in the United States. School age children transported in school buses are safer than children transported in motor vehicles of any other type. Large school buses provide protection because of their size and weight. Further, they must meet minimum Federal motor vehicle safety standards (FMVSSs) mandating compartmentalized seating, improved emergency exits, stronger roof structures and fuel systems, and better bus body joint strength.
Technical Paper

Field test of a pedestrian safety zone program for older pedestrians

2001-06-04
2001-06-0104
The objectives of this study were to develop and apply procedures for defining pedestrian safety zones for the older (age 65+) adult and to develop, implement and evaluate a countermeasure program in the defined zones. Zone definition procedures were applied to two cities: Phoenix and Chicago. Extensive countermeasure programs were implemented in both cities. A complete crash-based evaluation was conducted only for the city of Phoenix where data showed significant reductions in zone crashes to 65+ pedestrians over a period in which the city's population and overall pedestrian crashes increased. It was concluded that the zone process resulted in an effective and efficient means of deploying pedestrian countermeasures for the older adult.
Technical Paper

Parameter Determination and Vehicle Dynamics Modeling for the NADS of the 1998 Chevrolet Malibu

2001-03-05
2001-01-0140
The paper discusses the development of a model for a 1998 Chevrolet Malibu for the National Advanced Driving Simulator’s (NADS) vehicle dynamics simulation, NADSdyna. The Malibu is the third vehicle modeled for the NADS, and this is the third paper dealing with model development. SAE Paper 970564 contains details of the model for the 1994 Ford Taurus and SAE Paper 1999–01-0121 contains details of the model for the 1997 Jeep Cherokee. The front and rear suspensions are independent strut and link type suspensions modeled using recursive rigid body dynamics formulations. The suspension springs and shock absorbers are modeled as elements in the rigid body formulation. To complement the vehicle dynamics for the NADS application, subsystem models that include tire forces, braking, powertrain, aerodynamics, and steering are added to the rigid body dynamics model. The models provide state-of-the-art high fidelity vehicle handling dynamics for real-time simulation.
Technical Paper

Model Validation of the 1997 Jeep Cherokee for the National Advanced Driving Simulator

2000-03-06
2000-01-0700
This paper presents an evaluation of a complete vehicle dynamics model for a 1997 Jeep Cherokee to be used for the National Advanced Driving Simulator. Vehicle handling and powertrain dynamics are evaluated and simulation results are compared with experimental field-testing. NADSdyna, the National Advanced Driving Simulator vehicle dynamics software, is used. The Jeep evaluation covers vehicle directional dynamics that include steady state, transient and frequency response, and vehicle longitudinal dynamics that include acceleration and braking.
Technical Paper

Vehicle Dynamics Modeling for the National Advanced Driving Simulator of a 1997 Jeep Cherokee

1999-03-01
1999-01-0121
This paper discusses the development of the 1997 Jeep Cherokee model for the National Advanced Driving Simulator's planned vehicle dynamics software, NADSdyna. Recursive rigid body formalism called the Real Time Recursive Dynamics (RTRD) developed by the University of Iowa is used to model the front and rear suspension mechanisms. To complement vehicle dynamics for simulator applications, subsystems that include tires, aerodynamics, powertrain, brake, and steering are added to the rigid body dynamics model. These models provide high fidelity driving realism to simulate severe handling maneuvers in real time. The soundness of the model does not only depend on the mathematics of the model, but also on the validity of the parameters. Therefore, this paper discusses thoroughly the methodology of parameters estimation. A generic model of cruise control is included.
Technical Paper

Validation Results from Using NADSdyna Vehicle Dynamics Simulation

1997-02-24
970565
This paper presents an evaluation of a vehicle dynamics model intended to be used for the National Advanced Driving Simulator (NADS). Dynamic validation for high performance simulation is not merely a comparison between experimental and simulation plots. It involves strong insight of vehicle's subsystems mechanics, limitations of the mathematical formulations, and experimental predictions. Lateral, longitudinal, and ride dynamics are evaluated using field test data, and analytical diagnostics. The evaluation includes linear and non-linear range of vehicle dynamics response.
Technical Paper

Methodology for Validating the National Advanced Driving Simulator's Vehicle Dynamics (NADSdyna)

1997-02-24
970562
This paper presents an overview of work performed by the National Highway Traffic Safety Administration's (NHTSA) Vehicle Research and Test Center (VRTC) to test, validate, and improve the planned National Advanced Driving Simulator's (NADS) vehicle dynamics simulation. This vehicle dynamics simulation, called NADSdyna, was developed by the University of Iowa's Center for Computer-Aided Design (CCAD) NADSdyna is based upon CCAD's general purpose, real-time, multi-body dynamics software, referred to as the Real-Time Recursive Dynamics (RTRD), supplemented by vehicle dynamics specific submodules VRTC has “beta tested” NADSdyna, making certain that the software both works as computer code and that it correctly models vehicle dynamics. This paper gives an overview of VRTC's beta test work with NADSdyna. The paper explains the methodology used by VRTC to validate NADSdyna.
Technical Paper

Injury Severity in Restrained Children in Motor Vehicle Crashes

1995-11-01
952711
The paper reviews one hundred and three (103) cases of restrained children involved in motor vehicle crashes and admitted to the level I trauma center at Children's National Medical Center (CNMC). Thirty percent (30%) of these cases involved injuries with an Abbreviated InjuryScore (AIS) severity of 3 or greater. All cases are classified first by type of restraint system, i.e. infant seat, convertible seat, booster seat, lap belt, and lap and shoulder belt, and second, by type of injury sustained, i.e. head/face and neck, upper extremity, thorax, pelvic and abdominal, and lower extremity. The links between these classifications are examined to identify particular injury patterns associated with the use of individual restraint systems, e.g. the incidence of pelvic and abdominal injury associated with the use of both lap and lap and shoulder belts. For the severe injury cases the paper further examines the injury mechanisms for the most commonly observed patterns.
Technical Paper

Simulation of Road Crash Facial Lacerations By Broken Windshields

1987-02-23
870320
The facial laceration test has been proposed as an addition to the dummy injury criteria of Federal Motor Vehicle Safety Standard 208. To better understand laceration conditions as they actually occur, three road crashes of increasing severity, all involving facial laceration by the broken (cracked) windshield and one involving partial ejection, have been simulated physically and analytically. The physical simulations used vehicle test bucks, the Hybrid III head with the chamois facial coverings of the facial laceration test, and a piston - constrained Head Impactor. Computer simulations of the three crashes were also carried out using the CALSPAN 3D “CVS” and the 2D “DRISIM” computer programs. The computer simulations provide insight into the effective mass of the head and body on windshield contact, and the forces, velocities, and accelerations involved.
Technical Paper

Improvements in the Simulation of Unrestrained Passengers in Frontal Crashes Using Vehicle Test Data

1986-02-24
860654
The absence of data on the load deflection and energy absorption characteristics of vehicle interiors has been a factor which limits the accuracy of crash victim simulations. A recent test program conducted for the National Highway Traffic Safety Administration has developed data on the interactions of dashboards and knee panels with chests and knees. This paper summarizes the test results for several vehicles and shows how these results are used in simulating vehicle crash tests. Comparisons between crash tests and computer reconstruction using the 3-Dimensional Crash Victim Simulator (CVS-3D) for a late model car are included. The simulation shows good agreement with test and illustrates the application of available static and dynamic test data to improve occupant simulations.
Technical Paper

Determining the Effects of Brake Degradation

1973-02-01
730190
This paper presents an approach for evaluating the effects of brake system component degradation on vehicle braking performance. The approach involves the use of an inertial brake dynamometer, vehicle computer simulation, and vehicle test. The approach, procedures, and results of the study of the effects of worn friction materials, worn discs and drums, and contaminated brakes are presented.
X