Refine Your Search

Topic

Author

Search Results

Technical Paper

How Can a Sustainable Energy Infrastructure based on Renewable Fuels Contribute to Global Carbon Neutrality?

2024-07-02
2024-01-3023
Abstract. With the COP28 decisions the world is thriving for a future net-zero-CO2 society and the and current regulation acts, the energy infrastructure is changing in direction of renewables in energy production. All industry sectors will extend their share of direct or indirect electrification. The question might arise if the build-up of the renewables in energy production is fast enough. Demand and supply might not match in the short- and mid-term. The paper will discuss the roadmaps, directions and legislative boundary parameter in the regenerative energy landscape and their regional differences. National funding on renewables will gain an increasing importance to accelerate the energy transformation. The are often competing in attracting the same know-how on a global scale. In addition the paper includes details about energy conversion, efficiency as well as potential transport scenarios from production to the end consumer.
Technical Paper

Impact of Injection Valve Condition on Data-driven Prediction of Key Combustion Parameters Based on an Intelligent Diesel Fuel Injector for Large Engine Applications

2024-04-09
2024-01-2836
The advent of digitalization opens up new avenues for advances in large internal combustion engine technology. Key engine components are becoming "intelligent" through advanced instrumentation and data analytics. By generating value-added data, they provide deeper insight into processes related to the components. An intelligent common rail diesel fuel injection valve for large engine applications in combination with machine learning allows reliable prediction of key combustion parameters such as maximum cylinder pressure, combustion phasing and indicated mean effective pressure. However, fault-related changes to the injection valve also have to be considered. Based on experiments on a medium-speed four-stroke single-cylinder research engine with a displacement of approximately 15.7 liter, this study investigates the extent to which the intelligent injection valve can improve the reliability of combustion parameter predictions in the presence of injection valve faults.
Technical Paper

Numerical Study of an EGR Dilution in a Pre-Chamber Spark Ignited Engine Fuelled by Natural Gas

2024-04-09
2024-01-2081
Exhaust gas recirculation (EGR) is a proven strategy for the reduction of NOX emissions in spark ignited (SI) engines and compression ignition engines, especially in lean burn conditions where the increase of thermal efficiency is obtained. The dilution level of the mixture with EGR is in a conventional SI engine limited by the increase of combustion instability (CoV IMEP). A possible method to extend the EGR dilution level and ensure stable combustion is the implementation of an active pre-chamber combustion system. The pre-chamber spark ignited (PCSI) engine enables fast and stable combustion of lean mixtures in the main chamber by utilizing high ignition energy of multiple flame jets penetrating from the pre-chamber to the main chamber. In this paper, as an initial research step, a numerical analysis is performed by employing the 0D/1D simulation model, validated with the initial experimental and 3D-CFD results.
Technical Paper

Additive Manufacturing in Powertrain Development – From Prototyping to Dedicated Production Design

2024-04-09
2024-01-2578
Upcoming, increasingly stringent greenhouse gas (GHG) as well as emission limits demand for powertrain electrification throughout all vehicle applications. Increasing complexity of electrified powertrain architectures require an overall system approach combining modular component technology with integration and industrialization requirements when heading for further significant efficiency optimization. At the same time focus on reduced development time, product cost and minimized additional investment demand reuse of current production, machining, and assembly facilities as far as possible. Up to date additive manufacturing (AM) is an established prototype component, as well as tooling technology in the powertrain development process, accelerating procurement time and cost, as well as allowing to validate a significantly increased number of variants. The production applications of optimized, dedicated AM-based component design however are still limited.
Technical Paper

Artificial Neural Network-Based Emission Control for Future ICE Concepts

2023-10-31
2023-01-1605
The internal combustion engine contains several actuators to control engine performance and emissions. These are controlled within the engine ECU and follow a specific operating strategy to achieve objectives such as NOx reduction and fuel economy. However, these two goals are conflicting and a compromise is required. The operating state depends on system constraints such as engine speed, load, temperature levels, and aftertreatment system efficiency. This results in constantly changing target values to stay within the defined limits, especially the legal emission limits. The conventional approach is to use multiple operating modes. Each mode represents a specific compromise and is activated accordingly. Multiple modes are required to meet emissions regulations under all required conditions, which increases the calibration effort. This new control approach uses an artificial neural network to replace the conventional multiple mode approach.
Technical Paper

The Hybrid IC Engine – Challenges of Hydrogen and E-Fuel Compatibility within Current Production Boundaries

2023-04-11
2023-01-0397
Increasingly stringent greenhouse gas and emission limits demand for powertrain electrification throughout all vehicle applications. Beside fully electric powertrains different configurations of hybrid powertrains will have an important role in upcoming and future vehicle generations. As already discussed in previous papers, the requirements on the combustion engine in hybrid powertrains are different to those in a conventional powertrain solution, heading for brake thermal efficiency targets of 45% and above within the product lifecycle for conventional fuels. Focus on product cost and production and assembly facility investment drives reuse of technology packages within modular powertrain technology platforms, with different combinations of internal combustion engines (ICE), transmissions, and e-drive-layouts. The goal of zero carbon operation requires compatibility of ICE for sustainable fuels.
Technical Paper

Methodology Development for Investigation and Optimization of Engine Starts in a HEV Powertrain

2022-03-29
2022-01-0484
The shift toward electrification and limitations in battery electric vehicle technology have led to high demand for hybrid vehicles (HEVs) that utilize a battery and an internal combustion engine (ICE) for propulsion. Although HEVs enable lower fuel consumption and emissions compared to conventional vehicles, they still require combustion of fuels for ICE operation. Thus, emissions from hybrid vehicles are still a major concern. Engine starts are a major source of emissions during any driving event, especially before the three-way catalyst (TWC) reaches its light-off temperature. Since the engine is subjected to multiple starts during most driving events, it is important to mitigate and better understand the impact of these emissions. In this study, experiments were conducted to analyze engine starts in a hybrid powertrain on different experimental setup.
Technical Paper

The Hybrid Engine - Challenge between GHG-Legislation, Efficiency Targets, Product Cost and Production Boundaries

2022-03-29
2022-01-0593
Upcoming, increasingly stringent greenhouse gas (GHG) as well as emission limits demand for powertrain electrification throughout all vehicle applications. Increasing complexity of electrified powertrain architectures require an overall system approach combining component technology with integration and industrialization requirements when heading for further significant efficiency optimization of the subsystem internal combustion engine. The requirements on the combustion engine in hybrid powertrains are quite different to those in a conventional powertrain solution. Next-generation hybrid engines, with brake thermal efficiency (BTE) targets starting from 42-43% and aiming for 45% and above within the product lifecycle, require a re-thinking of the base engine architecture of current modular engine platforms. At the same time focus on the product cost and minimized additional investment demand reuse of current production, machining and assembly facilities as far as possible.
Technical Paper

Hybrid-Powertrain Development Approach to Reduce Number of Prototype Vehicles by Taking Right Decision in Early Development Phases on Engine Testbeds

2021-09-22
2021-26-0449
Today’s automotive industry is changing rapidly towards environmentally friendly vehicle propulsion systems. All over the globe, legislative CO2 consumption targets are under discussion and partly already in force. Hybrid powertrain configurations are capable to lower fuel consumption and limit pollutant emissions compared to pure IC-Engine driven powertrains. Depending on boundary conditions a numerous of different hybrid topologies- and its control strategies are thinkable. Typical approach is to find the optimum hybrid layout and strategy, by performing certain technical design tasks in office simulation directly followed by vehicle prototype tests on the chassis dyno and road. This leads to a high number of prototype vehicles, overload on chassis dynos, time consuming road test and finally to tremendous costs. Our developed approach is using the engine testbed with simulation capabilities as bridging element between office and vehicle development environment.
Technical Paper

Battery Thermal Management Simulation - 1D+1D Electrochemical Battery and 3D Module Modeling on Vehicle System Level

2021-04-06
2021-01-0757
Approaching engineering limits for the thermal design of battery modules requires virtual prototyping and appropriate models with respect to physical depth and computational effort. A multi-scale and multi-domain model describes the electrochemical behavior of a single battery unit cell in 1D+1D at the level of intra-cell phenomena, and it applies a 3D thermal model at module level. Both models are connected within a common vehicle simulation platform. The models are discussed with special emphasis on battery degradation such as solid electrolyte interphase layer formation, decomposition and lithium plating. The performance of the electrochemical model is assessed by discharge cycles and repeated charge/discharge simulations. The thermal module model is compared to CFD reference data and studied with respect to its grid sensitivity.
Technical Paper

Measurement Approaches for Variable Compression Ratio Systems

2021-04-06
2021-01-0649
In the ongoing competition of powertrain concepts the Internal Combustion Engine (ICE) will also have to demonstrate its potential for increased efficiency [1]. Variable Compression Ratio (VCR) Systems for Internal Combustion Engines (ICE) can make an important contribution to meeting stringent global fuel economy and CO2 standards. Using such technology a CO2 reduction of between 5% and 9% in the World Harmonized Light-Duty Vehicle Test Cycle (WLTC) are achievable, depending on vehicle class, load profile and power rating [2]. This paper provides a detailed description of the measurement approaches that are used during development of the AVL Dual Mode VCSTM and other VCR systems in fired operation. Results obtained from these measurements are typically used to calibrate or verify simulation models, which themselves are an integral part of the development of these systems [3].
Technical Paper

Future Diesel-Powertrain in LCV and SUV-Electrified, Modular Platform with Focus on Emission, Efficiency and Cost

2021-04-06
2021-01-0635
Considering worldwide future emission and CO2-legislation for the Light Commercial Vehicle segment, a wide range of powertrain variants is expected. Dependent on the application use cases all powertrain combinations, from pure Diesel engine propulsion via various levels of hybridization, to pure battery electric vehicles will be in the market. Under this aspect as well as facing differing legal and market requirements, a modular approach is presented for the LCV and SUV Segment, which can be adapted flexibly to meet the different requirements. A displacement range of 2.0L to 2.3L, representing the current baseline in Europe is taken as basis. To best fulfill the commercial boundaries, tailored technology packages, based on a common global engine platform are defined and compared. These packages include engine related technical features for emission- and fuel consumption improvement, as well as electrification measures, in particular 48V-MHEV variants.
Journal Article

Synthesis and Validation of Multidimensional Driving Cycles

2021-04-06
2021-01-0125
Driving cycles are usually defined by vehicle speed as a function of time and they are typically used to estimate fuel consumption and pollutant emissions. Currently, certification driving cycles are mainly used for this purpose. Since they are artificially generated, the resulting estimates and analyzes can generally be biased. In order to address these shortcomings, recent research efforts have been directed towards development of statistically representative synthetic driving cycles derived from recorded real-world data. To this end, this paper focuses on synthesis of multidimensional driving cycles using the Markov chain-based method and particularly on their validation. The synthesis is based on Markov chain of fourth order, where the road slope is accounted, as well. The corresponding transition probability matrix is implemented in the form of a sparse matrix parameterized with a rich set of recorded city bus driving cycles.
Technical Paper

e-Fuel Production via Renewables and the Impact on the In-Use CO2 Performance

2020-09-15
2020-01-2139
The trend towards renewable energy sources will continue under the pre-amble of greenhouse gas (GHG) emission reduction targets. The main question is how to harvest and store renewable energy properly. The challenge of intermittency of the renewable energy resources make the supply less predictable compared to the traditional energy sources. Chemical energy carriers like hydrogen and synthetic fuels (e-Fuels) seem to be at least a part of the solution for storing renewable energy. The usage of e-Fuels in the existing ICE-powered vehicle fleet has a big lever arm to reduce the GHG emissions of the transport sector in the short- and medium term. The paper covers the whole well-to-wheel (WtW) pathway by discussing the e-Fuel production from renewable sources, the storage and the usage in the vehicle. It will be summarized by scenarios on the impact of e-Fuel to the WtW CO2 fleet emissions.
Technical Paper

A Modular Gasoline Engine Family for Hybrid Powertrains: Balancing Cost and Efficiency Optimization

2020-04-14
2020-01-0839
The electrification of the powertrain is a prerequisite to meet future fuel consumption limits, while the internal combustion engine (ICE) will remain a key element of most production volume relevant powertrain concepts. High volume applications will be covered by electrified powertrains. The range will include parallel hybrids, 48V- or High voltage Mild- or Full hybrids, up to Serial hybrids. In the first configurations the ICE is the main propulsion, requiring the whole engine speed and load range including the transient operation. At serial hybrid applications the vehicle is generally electrically driven, the ICE provides power to drive the generator, either exclusively or supporting a battery charging concept. As the ICE is not mechanically coupled to the drive train, a reduction of the operating range and thus a partial simplification of the ICE is achievable.
Technical Paper

FCEV Performance Assessment - Electrochemical Fuel Cell and Battery Modelling on Vehicle Level

2020-04-14
2020-01-0857
Fuel cell electric vehicles are a promising technology to create CO2- neutral mobility. Model-based development approaches are key to reduce costs and to raise efficiencies. A model on vehicle system level is discussed that balances the need of physical depth and computational performance. The vehicle model comprises the domains of mechanics, electrics, thermodynamics, cooling and controls. Detailed models of the fuel cell and battery are presented as a part of the system model. The models apply electrochemical approaches and spatial resolutions up to 3D. The models of both components are validated via 3D reference simulations showing a seamless parameter transfer between system level and CFD-based simulations. The validity of the vehicle model, including the electrochemical components, is demonstrated by simulating the Toyota Mirai vehicle. Simulation results of an NEDC are compared to measurements.
Technical Paper

An Extended Range Electric Vehicle Backward-looking Model Accounting for Powertrain Transient Effects

2020-04-14
2020-01-1442
Since the Extended range electric vehicle (EREV) powertrain structure is based on different power sources, a key vehicle design activity is related to development of an optimal control strategy for achieving a high fuel economy potential. The central role in developing an optimized energy management strategy is related to availability of computationally-efficient, high-fidelity EREV powertrain model. This paper proposes a method for developing an extended quasi-static backward-looking EREV powertrain model, which when compared to traditional backward model accounts for powertrain transient effects through additional fuel and battery state-of-charge consumptions. The effects of powertrain transients are characterized by means of extensive simulations of dynamic forward-looking EREV powertrain model covering a wide array of possible powertrain transient scenarios.
Technical Paper

Multi-Level Modeling of Real Syngas Combustion in a Spark Ignition Engine and Experimental Validation

2019-09-09
2019-24-0012
Syngas produced from biomass gasification is being increasingly considered as a promising alternative to traditional fuels in Spark-Ignition (SI) Internal Combustion Engines (ICEs). Due to the low energy density and extreme variability in the composition of this gaseous fuel, numerical modeling can give an important contribution to assure stable engine performances. The present work intends to give a contribution in this sense in this sense, by proposing a multi-level set of approaches, characterized by an increasing detail, as a tool aimed at the optimization of energy conversion of non-conventional fuels. At first, a specific characterization of the dependency of the syngas laminar flame speed upon its composition is achieved through an iterative approach pursued in the ANSYS ChemkinTM environment, where validated correlations of the flame speed tuning parameters are obtained in a zero-dimensional framework.
Technical Paper

Dual Mode VCS Variable Compression System - System Integration and Vehicle Requirements

2019-04-02
2019-01-0248
Future legislation scenarios as well as stringent CO2 targets, in particular under real driving conditions, will require the introduction of new and additional powertrain technologies. Beside the increasing electrification of the powertrain, it will be essential to utilize the full potential of the Internal Combustion Engine (ICE). There is clearly a competition of new and different ICE-Technologies [1] including VCR. VCR systems are expected to be introduced to a considerable number of next generation turbocharged Spark Ignited (SI) engines in certain vehicle classes. The implementation of Miller or Atkinson cycles is an essential criterion for increased geometric Compression Ratio (CR). The DUAL MODE Variable Compression System (VCS)TM enables a 2-stage variation of the connecting rod length and thus of the compression ratio (CR).
Technical Paper

Optimal Energy Management Control of a Parallel Plug-In Hybrid Electric Vehicle in the Presence of Low Emission Zones

2019-04-02
2019-01-1215
In order to reduce air and noise pollution in urban environments, low emission zones (LEZ) are being introduced in many cities worldwide. This paper deals with design of a LEZ-anticipating control strategy for a Plug-in Hybrid Electric Vehicle (PHEV) given in a P2-type parallel powertrain configuration. A control-oriented backward-looking model of the PHEV powertrain is used as a design basis. The core control strategy is based on combining a rule-based (RB) controller including an explicit battery state-of-charge (SoC) controller and an equivalent consumption minimization strategy (ECMS), and it is superimposed by generating an optimal SoC reference trajectory aimed at enabling pure electric driving through forthcoming LEZs and minimizing the overall fuel consumption. The optimal SoC reference trajectory is generated by minimizing its length over travelled distance.
X