Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Design and Development of a Parallel Hybrid Powertrain for a High Performance Sport Utility Vehicle

2005-10-24
2005-01-3827
A plug-in, charge-depleting, parallel hybrid powertrain has been developed for a high performance sport utility vehicle. Based on the Ford U152 Explorer platform, implementation of the hybrid powertrain has resulted in an efficient, high performance vehicle with a 0-60 mph acceleration time of 7.5 seconds. A dual drive system allows for four-wheel drive capability while optimizing regenerative braking and minimizing electric motor cogging losses. Design of the system focused on reducing petroleum use, lowering greenhouse gas emissions, and reducing criteria tailpipe emissions. Additionally, this vehicle has been designed as a partial zero emissions vehicle (PZEV), allowing the driver to travel up to 50 miles in a zero emission all-electric mode. High-energy traction battery packs can be charged from the grid, yielding higher efficiencies and lower critical emissions, or maintained through the internal combustion engine (ICE) as with a traditional hybrid vehicle.
Technical Paper

Design and Development of the 2002 UC Davis FutureTruck

2003-03-03
2003-01-1263
Yosemite is an advanced hybrid electric vehicle built on the Ford U152 Explorer platform. The University of California, Davis, FutureTruck team designed Yosemite to meet the following objectives: 1 Maximize vehicle energy efficiency 2 Minimize petroleum consumption 3 Reduce fuel cycle greenhouse gas emissions 4 Achieve California Super Ultra Low Emission Vehicle (SULEV) target 5 Deliver class-leading performance The University of California, Davis FutureTruck team redesigned a 2002 Ford Explorer as a Hybrid Electric Vehicle to meet the following goals: reduce fuel cycle greenhouse gas emissions by 67%, double the fuel economy of a stock Explorer, meet California's Super Ultra Low Emissions Vehicle standard, and qualify for substantial Partial Zero Emissions Vehicle credits in California. Yosemite meets these goals with an efficient flexible fuel hybrid powertrain, improved component systems, and an advanced control system.
Technical Paper

A Preliminary Assessment of the Possible Acceptance of Fuel Cell Bus Technology by Current Fleet Vehicle Operators

2002-11-18
2002-01-3057
Fuel cell engines are expected to deliver greater efficiency and lower emissions than conventional transit bus powertrains in the near future. Although experimental vehicles have demonstrated the emission and efficiency benefits of fuel cell power, the next step toward implementation is widespread fleet demonstrations to prove the technology in the field. In order to aid in the start of new demonstrations and speed fuel cell technology towards the fleet vehicle marketplace, an assessment of the needs, risks, and advantages of using fuel cell power must be obtained from a consumer perspective. It has been assumed that the increased fuel efficiency that is inherent to fuel cell systems will lower operating costs as compared with conventional diesel powertrains. A comparison of two fuel cell buses and a diesel bus was completed in order to quantify the operational cost benefits and identify potential cost deterrents to fuel cell bus implementation.
Technical Paper

Design and Development of the UC Davis FutureTruck

2002-03-04
2002-01-1210
The University of California, Davis FutureTruck team redesigned a 2000 Chevrolet Suburban as a Hybrid Electric Vehicle to meet the following goals: reduce fuel cycle greenhouse gas emissions by 66%, increase vehicle fuel economy to double that of the stock Suburban, meet California's Super Ultra Low Emissions Vehicle standard, and qualify for substantial Partial Zero Emissions Vehicle credits in California. Sequoia meets these goals with an efficient powertrain, improved component systems, and an advanced control system. Sequoia utilizes two independent powertrains to provide Four-Wheel Drive and achieve stock towing capacity. The primary powertrain combines a 1.9L gasoline engine inline with a 75 kW brushless DC motor driving the rear wheels. This powertrain configuration is simple, compact, reliable, and allows flexibility in control strategy. The secondary powertrain employs a 75 kW brushless DC motor to drive the front differential.
Technical Paper

Compressed Hydrogen Storage for Fuel Cell Vehicles

2001-08-20
2001-01-2531
Near term (ca. 2005) Fuel Cell Vehicles (FCVs) will primarily utilize Direct-Hydrogen Fuel Cell (DHFC) systems. The primary goal of this study was to provide an analytical basis for including a realistic Compressed Hydrogen Gas (CHG) fuel supply simulation within an existing dynamic DHFC system and vehicle model. The purpose of this paper is to provide a tutorial describing the process of modeling a hydrogen storage system for a fuel cell vehicle. Three topics were investigated to address the delivery characteristics of H2: temperature change (ΔT), non-ideal gas characteristics at high pressures, and the maximum amount of hydrogen available due to the CHG storage tank effective “state-of-charge” (SOC) -- i.e. how much does the pressure drop between the tank and the fuel cell stack reduce the usable H2 in the tank. The Joule-Thomson coefficient provides an answer to the expected ΔT during expansion of the H2 from 5000 psi to 45 psi.
Technical Paper

The Hybridized Fuel Cell Vehicle Model of the University of California, Davis

2001-03-05
2001-01-0543
Vehicle manufacturers claim that fuel cell vehicles are significantly more fuel-efficient and emit fewer emissions than conventional internal combustion engine vehicles /1/. A computer model can help to explore and understand the underlying reasons for this potential improvement. In previous published work, the UC Davis Vehicle Model for the case of a load-following Indirect Methanol Fuel Cell Vehicle (IMFCV) has been introduced and discussed in detail /2/. Because of possible technical barriers with load following vehicles, as well as near term cost issues, hybrid fuel cell vehicle concepts are widely discussed as another fuel cell vehicle option. For load following vehicles, the questions of fast start up and fuel processor dynamics in extreme transient situations, (e.g., during phases of hard acceleration) are not totally resolved at this time. For both of these performance issues, a hybrid design could offer at least an interim solution.
Technical Paper

Inspection and Maintenance for Automated Highway Systems

1997-08-06
972653
An Automated Highway System (AHS) represents the next major enhancement to the Nation's highway system. Envisioned AHS configurations typically require a mixture of intelligence in both the vehicle and the infrastructure. Here, the infrastructure includes the roadway, roadside, check-in and check-out points, vehicle-to-roadside communications systems, and any other systems external to the vehicle that are required for the safe and efficient operation of an AHS. Due to the complexity of an AHS and the required level of safety and reliability, it will be necessary to develop innovative techniques to rapidly and accurately inspect, monitor, and maintain the health of the required infrastructure, particularly after construction and natural disasters, such as earthquakes or flooding.
Technical Paper

A Coordinated, Multiple Wheeled Mobile Robot System for AHS Maintenance and Construction

1997-08-06
972654
Automated Highway Systems (AHS) will likely have numerous items including sensors and other electronics that are not present in conventional highways, and these pose both unique problems and opportunities from a maintenance and construction viewpoint. This paper reports on a new and unique concept for maintaining AHS which could also benefit traditional highway operations. The paper discusses a system of multiple wheeled mobile robots that are coordinated to accomplish complex tasks, and are tethered to a support vehicle for accurate relative positioning, power, and other necessary supplies. Multiple coordinated WMRs are proposed since many AHS maintenance and construction operations will involve several concurrent subtasks.
Technical Paper

EV Battery Pack Life: Pack Degradation and Solutions

1995-08-01
951949
Several lead-acid battery packs of different manufacture and voltage were evaluated on a performance and life-cycle basis. The battery packs ranged from a small 36 volt laboratory pack to a 320 volt full size U.S. Electricar S-10 truck pack. The influence of the charge algorithm, ambient temperature, and module connection methods for parallel strings on the performance and cycle-life of this laboratory pack was studied. Finally, a survey of presently employed battery management techniques, used in three “production” electric vehicles, was conducted. A standard set of testing procedures for electric vehicle batteries, based on industry accepted testing procedures, were used in the evaluations. The battery packs were evaluated by a combination of constant current capacity tests, cyclical loading to simulate typical EV driving cycles and actual EV driving experience.
Technical Paper

Design and Vehicle Integration of an Advanced Zinc Bromine Battery

1995-08-01
951950
The zinc bromine battery is a high energy density sealed battery that utilizes a flowing electrolyte and low cost materials (predominantly plastic) and operates at ambient temperatures. The typical full scale specific energy for this bipolar plate battery is more then twice that of lead acid batteries. The engineering research presented in this paper is the design and construction of a high-voltage, zinc bromine battery for use in an electric vehicle. Specifically, a 390 volt system is being integrated into a US Electricar S10 light-duty truck. The research goal is to show a reliable and practical electrochemical power system that is lighter and provides a longer range and shorter recharge times than lead acid batteries. Results of this study will help determine the applicability and practicality of zinc bromine technology for electric vehicles.
Technical Paper

Steering Control for Roll Mode Damping Augmentation in Tall Road Vehicles

1993-11-01
932947
High center of gravity vehicles need to be stiff in roll to prevent excessive roll angles when cornering. In some cases, there may be more roll compliance in the tires than in the suspension itself. For this reason, the conventional shock absorbers may not provide effective damping of the roll mode. The result is that wind gust and roadway unevenness disturbances can cause large swaying oscillations. Here a novel use of automatically steered wheel is proposed to augment the damping of the roll mode. Either the front wheels, the rear wheels or both can be steered using a simple feedback scheme using sensed roll rate. The scheme is effective in specific speed ranges and stabilizes the roll mode without introducing disturbance moments from roadway unevenness as shock absorbers do. There is a theoretical advantage to coordinated steering of both front and rear wheels but this level of complexity may not be practically justified.
X