Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Biomechanical Response of the Pediatric Abdomen, Part 2: Injuries and Their Correlation with Engineering Parameters

2008-11-03
2008-22-0006
This paper describes the injuries generated during dynamic belt loading to a porcine model of the 6-year-old human abdomen, and correlates injury outcomes with measurable parameters. The test fixture produced transverse, dynamic belt loading on the abdomen of 47 immediately post-mortem juvenile swine at two locations (upper/lower), with penetration magnitudes ranging from 23% – 65% of the undeformed abdominal depth, with and without muscle tensing, and over a belt penetration rate range of 2.9 m/s – 7.8 m/s. All thoracoabdominal injuries were documented in detail and then coded according to the Abbreviated Injury Scale (AIS). Observed injuries ranged from AIS 1 to AIS 4. The injury distribution matched well the pattern of injuries observed in a large sample of children exposed to seatbelt loading in the field, with most of the injuries in the lower abdomen.
Technical Paper

Comparison of Belted Hybrid III, THOR, and Cadaver Thoracic Responses in Oblique Frontal and Full Frontal Sled Tests

2003-03-03
2003-01-0160
This paper compares restrained Hybrid III and THOR thoracic kinematics and cadaver injury outcome in 30° oblique frontal and in full frontal sled tests. Peak shoulder belt tension, the primary source of chest loading, changed by less than four percent and peak chest resultant acceleration changed by less than 10% over the 30° range tested. Thoracic kinematics were likewise insensitive to the direction of the collision vector, though they were markedly different between the two dummies. Mid-sternal Hybrid III chest deflection, measured by the standard sternal potentiometer and by supplemental internal string potentiometers, was slightly lower (∼10%) in the oblique tests, but the oblique tests produced a negligible increase in lateral movement of the sternum. In an attempt to understand the biofidelity of these dummy responses, a series of 30-km/h human cadaver tests having several collision vectors (0°, 15°, 30°, 45°) was analyzed.
X