Refine Your Search

Topic

Author

Search Results

Technical Paper

Energy Modeling of Deceleration Strategies for Electric Vehicles

2023-04-11
2023-01-0347
Rapid adoption of battery electric vehicles means improving the energy consumption and energy efficiency of these new vehicles is a top priority. One method of accomplishing this is regenerative braking, which converts kinetic energy to electrical energy stored in the battery pack while the vehicle is decelerating. Coasting is an alternative strategy that minimizes energy consumption by decelerating the vehicle using only road load. A battery electric vehicle model is refined to assess regenerative braking, coasting, and other deceleration strategies. A road load model based on public test data calculates tractive effort requirements based on speed and acceleration. Bidirectional Willans lines are the basis of a powertrain model simulating battery energy consumption. Vehicle tractive and powertrain power are modeled backward from prescribed linear velocity curves, and the coasting trajectory is forward modeled given zero tractive power.
Technical Paper

Development and Testing of a Hybrid Vehicle Energy Management Strategy

2023-04-11
2023-01-0552
An energy management strategy for a prototype P4 parallel hybrid Chevrolet Blazer is developed for the EcoCAR Mobility Challenge. The objective of the energy management strategy is to reduce energy consumption while maintaining the drive quality targets of a conventional vehicle. A comprehensive model of the hybrid powertrain and vehicle physics is constructed to aid in the development of the control strategy. To improve fuel efficiency, a Willans line model is developed for the conventional powertrain and used to develop a rule-based torque split strategy. The strategy maximizes high efficiency engine operation while reducing round trip losses. Calibratable parameters for the torque split operating regions allow for battery state of charge management. Torque request and filtering algorithms are also developed to ensure the hybrid powertrain can smoothly and reliably meet driver demand.
Journal Article

Unified Net Willans Line Model for Estimating the Energy Consumption of Battery Electric Vehicles

2023-04-11
2023-01-0348
Due to increased urgency regarding environmental concerns within the transportation industry, sustainable solutions for combating climate change are in high demand. One solution is a widespread transition from internal combustion engine vehicles (ICEVs) to battery electric vehicles (BEVs). To facilitate this transition, reliable energy consumption modeling is desired for providing quick, high-level estimations for a BEV without requiring extensive vehicle and computational resources. Therefore, the goal of this paper is to create a simple, yet reliable vehicle model, that can estimate the energy consumption of most electric vehicles on the market by using parameter normalization techniques. These vehicle parameters include the vehicle test weight and performance to obtain a unified net Willans line to describe the input/output power using a linear relationship.
Technical Paper

5G Network Connectivity Automated Test and Verification for Autonomous Vehicles Using UAVs

2022-03-29
2022-01-0145
The significance and the number of vehicle safety features enabled via connectivity continue to increase. OnStar, with its automatic airbag notification, was one of the first vehicle safety features that demonstrate the enhanced safety benefits of connectivity. Vehicle connectivity benefits have grown to include remote software updates, data analytics to aid with preventative maintenance and even to theft prevention and recovery. All of these services require available and reliable connectivity. However, except for the airbag notification, none have strict latency requirements. For example, software updates can generally be postponed till reliable connectivity is available. Data required for prognostic use cases can be stored and transmitted at a later time. A new set of use cases are emerging that do demand continuous, reliable and low latency connectivity. For example, remote control of autonomous vehicles may be required in unique situations.
Technical Paper

Development of a Willans Line Rule-Based Hybrid Energy Management Strategy

2022-03-29
2022-01-0735
The pre-prototype development of a simulated rule-based hybrid energy management strategy for a 2019 Chevrolet Blazer RS converted parallel P4 full hybrid is presented. A vehicle simulation model is developed using component bench data and validated using EPA-reported dynamometer fuel economy test data. A combined Willans line model is proposed for the engine and transmission, with hybrid control rules based on efficiency-derived engine power thresholds. Algorithms are proposed for battery state of charge (SOC) management including engine loading and one pedal strategies, with battery SOC maintained within 20% to 80% safe limits and charge balanced behavior achieved. The simulated rule-based hybrid control strategy for the hybrid vehicle has an energy consumption reduction of 20% for the Hot 505, 3.6% for the HwFET, and 12% for the US06 compared to the stock vehicle.
Technical Paper

Evaluating Simulation Driver Model Performance Using Dynamometer Test Criteria

2022-03-29
2022-01-0530
The influence of driver modeling and drive cycle target speed trace modification on vehicle dynamics within energy consumption simulations is studied. EPA dynamometer speed error criteria and the SAE J2951 Drive Quality Evaluation for Chassis Dynamometer Testing standard are applied to simulation outputs as proposed components of simulation validation, providing guidelines for acceptable vehicle speed outputs and allowing comparison of simulation results to reported EPA dynamometer test statistics. The combined effect of driver model tuning and drive cycle interpolation methods is investigated for the UDDS, HwFET and US06 drive cycles, with EPA-specified linearly interpolated speed trace and a PI controller driver as a baseline result.
Journal Article

Willans Line Bidirectional Power Flow Model for Energy Consumption of Electric Vehicles

2022-03-29
2022-01-0531
A new and unique electric vehicle powertrain model based on bidirectional power flow for propel and regenerative brake power capture is developed and applied to production battery electric vehicles. The model is based on a Willans line model to relate power input from the battery and power output to tractive effort, with one set of parameters (marginal efficiency and an offset loss) for the bidirectional power flow through the powertrain. An electric accessory load is included for the propel, brake and idle phases of vehicle operation. In addition, regenerative brake energy capture is limited with a regen fraction (where the balance goes to friction braking), a power limit, and a low-speed cutoff limit. The purpose of the model is to predict energy consumption and range using only tractive effort based on EPA published road load and test mass (test car list data) and vehicle powertrain parameters derived from EPA reported unadjusted UDDS and HWFET energy consumption.
Technical Paper

Modification of the Internal Flows of Thermal Propulsion Systems Using Local Aerodynamic Inserts

2020-09-15
2020-01-2039
Modern thermal propulsion systems (TPS) as part of hybrid powertrains are becoming increasingly complex. They have an increased number of components in comparison to traditionally powered vehicles leading to increased demand in packaging requirements. Many of the components in these systems relate to achieving efficiency gains, weight saving and pollutant reduction. This includes turbochargers and diesel or gasoline particulate filters for example and these are known to be very sensitive to inlet boundary conditions. When overcoming packaging requirements, sub-optimal flow distributions throughout the TPS can easily occur. Moreover, the individual components are often designed in isolation assuming relatively flat and artificially quiescent inlet flow conditions in comparison to those they are actually presented with. Thus, some of the efficiency benefits are lost through reduced component aerodynamic efficiency.
Technical Paper

Does the Interaction between Vehicle Headlamps and Roadway Lighting Affect Visibility? A Study of Pedestrian and Object Contrast

2020-04-14
2020-01-0569
Vehicle headlamps and roadway lighting are the major sources of illumination at night. These sources affect contrast - defined as the luminance difference of an object from its background - which drives visibility at night. However, the combined effect of vehicle headlamps and intersection lighting on object contrast has not been reported previously. In this study, the interactive effects of vehicle headlamps and overhead lighting on object contrast were explored based on earlier work that examined drivers’ visibility under three intersection lighting designs (illuminated approach, illuminated box, and illuminated approach + box). The goals of this study were to: 1) quantify object luminance and contrast as a function of a vehicle’s headlamps and its distance to an intersection using the three lighting designs; and, 2) to assess whether contrast influences visual performance and perceived visibility in a highly dynamic intersection environment.
Technical Paper

EcoRouting Strategy Using Variable Acceleration Rate Synthesis Methodology

2018-04-16
2018-01-5005
This paper focuses on the analysis of an EcoRouting system with minimum and maximum number of conditional stops. The effect on energy consumption with the presence and absence of road-grade information along a route is also studied. An EcoRouting system has been developed that takes in map information and converts it to a graph of nodes containing route information such as speed limits, stop lights, stop signs and road grade. A variable acceleration rate synthesis methodology is also introduced in this paper that takes into consideration distance, acceleration, cruise speed and jerk rate as inputs to simulate driver behavior on a given route. A simulation study is conducted in the town of Blacksburg, Virginia, USA to analyze the effects of EcoRouting in different driving conditions and to examine the effects of road grade and stop lights on energy consumption.
Technical Paper

Control Strategy Development for Parallel Plug-In Hybrid Electric Vehicle Using Fuzzy Control Logic

2016-10-17
2016-01-2222
The Hybrid Electric Vehicle Team of Virginia Tech (HEVT) is currently developing a control strategy for a parallel plug-in hybrid electric vehicle (PHEV). The hybrid powertrain is being implemented in a 2016 Chevrolet Camaro for the EcoCAR 3 competition. Fuzzy rule sets determine the torque split between the motor and the engine using the accelerator pedal position, vehicle speed and state of charge (SOC) as the input variables. The torque producing components are a 280 kW V8 L83 engine with active fuel management (AFM) and a post-transmission (P3) 100 kW custom motor. The vehicle operates in charge depleting (CD) and charge sustaining (CS) modes. In CD mode, the model drives as an electric vehicle (EV) and depletes the battery pack till a lower state of charge threshold is reached. Then CS operation begins, and driver demand is supplied by the engine operating in V8 or AFM modes with supplemental or loading torque from the P3 motor.
Technical Paper

EcoRouting for Performance Plug-in Hybrid Electric Vehicles

2016-10-17
2016-01-2219
EcoRouting refers to determining a route that minimizes vehicle energy consumption compared to traditional routing methods, which usually attempt to minimize travel time. EcoRoutes typically increase travel time and in some cases this increase may have to be constrained for the route to be viable. While significant research on EcoRouting exists for conventional vehicles, incorporating the novel aspects of plug-in hybrids opens up new areas to be explored. A prototype EcoRouting system has been developed that takes in map information and converts it to a graph of nodes containing route information such as speed and grade. The route with the minimum energy consumption is selected as the EcoRoute unless there is more than an 8% difference between the minimum time route and the EcoRoute.
Technical Paper

Conceptual Design and Weight Optimization of Aircraft Power Systems with High-Peak Pulsed Power Loads

2016-09-20
2016-01-1986
The more electric aircraft (MEA) concept has gained popularity in recent years. As the main building blocks of advanced aircraft power systems, multi-converter power electronic systems have advantages in reliability, efficiency and weight reduction. The pulsed power load has been increasingly adopted--especially in military applications--and has demonstrated highly nonlinear characteristics. Consequently, more design effort needs to be placed on power conversion units and energy storage systems dealing with this challenging mission profile: when the load is on, a large amount of power is fed from the power supply system, and this is followed by periods of low power consumption, during which time the energy storage devices get charged. Thus, in order to maintain the weight advantage of MEA and to keep the normal functionality of the aircraft power system in the presence of a high-peak pulsed power load, this paper proposes a novel multidisciplinary weight optimization technique.
Technical Paper

Comparison of ATD to PMHS Response in the Under-Body Blast Environment

2015-11-09
2015-22-0017
A blast buck (Accelerative Loading Fixture, or ALF) was developed for studying underbody blast events in a laboratory-like setting. It was designed to provide a high-magnitude, high-rate, vertical loading environment for cadaver and dummy testing. It consists of a platform with a reinforcing cage that supports adjustable-height rigid seats for two crew positions. The platform has a heavy frame with a deformable floor insert. Fourteen tests were conducted using fourteen PMHS (post mortem human surrogates) and the Hybrid III ATD (Anthropomorphic Test Device). Tests were conducted at two charge levels: enhanced and mild. The surrogates were tested with and without PPE (Personal Protective Equipment), and in two different postures: nominal (knee angle of 90°) and obtuse (knee angle of 120°). The ALF reproduces damage in the PMHS commensurate with injuries experienced in theater, with the most common damage being to the pelvis and ankle.
Technical Paper

Development of a Multi-Disciplinary Optimization Framework for Nonconventional Aircraft Configurations in PACELAB APD

2015-09-15
2015-01-2564
1 Most traditional methods and equations for estimating the structural and nonstructural weights and aerodynamics used at the aircraft conceptual design phase are empirical relations developed for conventional tube-and-wing aircraft. In a computation-heavy design process, such as Multidisciplinary Design and Optimization (MDO) simplicity of calculation is paramount, and for conventional configurations the aforementioned approaches work well enough for conceptual design. But, for non-traditional designs such as strut-braced winged aircraft, empirical data is generally not available and the usual methods can no longer apply. One solution to this is a movement toward generalized physics-based methods that can apply equally well to conventional or non-traditional configurations.
Journal Article

Road Profile Estimation for Active Suspension Applications

2015-04-14
2015-01-0651
The road profile has been shown to have significant effects on various vehicle conditions including ride, handling, fatigue or even energy efficiency; as a result it has become a variable of interest in the design and control of numerous vehicle parts. In this study, an integrated state estimation algorithm is proposed that can provide continuous information on road elevation and profile variations, primarily to be used in active suspension controls. A novel tire instrumentation technology (smart tire) is adopted together with a sensor couple of wheel attached accelerometer and suspension deflection sensor as observer inputs. The algorithm utilizes an adaptive Kalman filter (AKF) structure that provides the sprung and unsprung mass displacements to a sliding-mode differentiator, which then yields to the estimation of road elevations and the corresponding road profile along with the quarter car states.
Journal Article

Assessment of Ride Comfort and Braking Performance Using Energy-Harvesting Shock Absorber

2015-04-14
2015-01-0649
Conventional viscous shock absorbers, in parallel with suspension springs, passively dissipate the excitation energy from road irregularity into heat waste, to reduce the transferred vibration which causes the discomfort of passengers. Energy-harvesting shock absorbers, which have the potential of conversion of kinetic energy into electric power, have been proposed as semi-active suspension to achieve better balance between the energy consumption and suspension performance. Because of the high energy density of the rotary shock absorber, a rotational energy-harvesting shock absorber with mechanical motion rectifier (MMR) is used in this paper. This paper presents the assessment of vehicle dynamic performance with the proposed energy-harvesting shock absorber in braking process. Moreover, a PI controller is proposed to attenuate the negative effect due to the pitch motion.
Technical Paper

An Illustrative Look at Energy Flow through Hybrid Powertrains for Design and Analysis

2015-04-14
2015-01-1231
Improving fuel economy and overall vehicle emissions are very important in today's society with strict new regulations throughout the world. To help in the education process for the next generation of design engineers, this paper seeks to define a powertrain model created and developed to help users understand the basics behind hybrid vehicles and the effects of these advanced technologies. One of the main goals of this research is to maintain a simplified approach to model development. The 1 Hz model described within this work aims to allow energy to be simply and understandably traced through a hybrid powertrain. Through the use of a “backwards” energy tracking method, demand for a drive cycle is found, and, after tracing the energy demand through each powertrain component, the resulting fuel to meet vehicle demand and associated powertrain losses is found.
Technical Paper

Analysis of Event Data Recorder Survivability in Crashes with Fire, Immersion, and High Delta-V

2015-04-14
2015-01-1444
Event data recorders (EDRs) must survive regulatory frontal and side compliance crash tests if installed within a car or light truck built on or after September 1, 2012. Although previous research has shown that EDR data are surviving these tests, little is known about whether EDRs are capable of surviving collisions of higher delta-v, or crashes involving vehicle fire or immersion. The goal of this study was to determine the survivability of light vehicle EDRs in real world fire, immersion, and high change in velocity (delta-v) cases. The specific objective was to identify the frequency of these extreme events and to determine the EDR data download outcome when subject to damage caused by these events. This study was performed using three crash databases: the Fatality Analysis Reporting System (FARS), the National Automotive Sampling System / Crashworthiness Data System (NASS/CDS), and the National Motor Vehicle Crash Causation Survey (NMVCCS).
Technical Paper

Survivability of Event Data Recorder Data in Exposure to High Temperature, Submersion, and Static Crush

2015-04-14
2015-01-1449
Event data recorder (EDR) data are currently only required to survive the crash tests specified by Federal Motor Vehicle Safety Standard (FMVSS) 208 and FMVSS 214. Although these crash tests are severe, motor vehicles are also exposed to more severe crashes, fire, and submersion. Little is known about whether current EDR data are capable of surviving these events. The objective of this study was to determine the limits of survivability for EDR data for realistic car crash conditions involving heat, submersion, and static crush. Thirty-one (31) EDRs were assessed in this study: 4 in the pilot tests and 27 in the production tests. The production tests were conducted on model year (MY) 2011-2012 EDRs enclosed in plastic, metal, or a combination of both materials. Each enclosure type was exposed to 9 tests. The high temperature tests were divided into 3 oven testing conditions: 100°C, 150°C, and 200°C.
X