Refine Your Search

Topic

Search Results

Technical Paper

Development of a Multiple Injection Strategy for Heated Gasoline Compression Ignition (HGCI)

2023-04-11
2023-01-0277
A multiple-injection combustion strategy has been developed for heated gasoline direct injection compression ignition (HGCI). Gasoline was injected into a 0.4L single cylinder engine at a fuel pressure of 300bar. Fuel temperature was increased from 25degC to a temperature of 280degC by means of electric injector heater. This approach has the potential of improving fuel efficiency, reducing harmful CO and UHC as well as particulate emissions, and reducing pressure rise rates. Moreover, the approach has the potential of reducing fuel system cost compared to high pressure (>500bar) gasoline direct injection fuel systems available in the market for GDI SI engines that are used to reduce particulate matter. In this study, a multiple injection strategy was developed using electric heating of the fuel prior to direct fuel injection at engine speed of 1500rpm and load of 12.3bar IMEP.
Journal Article

Exploration of Vehicle Body Countermeasures Subjected to High Energy Loading

2023-04-11
2023-01-0003
Enhanced protection against high speed crashes requires more aggressive passive safety countermeasures as compared to what are provided in vehicle structures today. Apart from such collision-related scenarios, high energy explosions, accidentally caused or otherwise, require superior energy-absorbing capability of vehicle body subsystems. A case in point is a passenger vehicle subjected to an underbody blast emanating shock wave energy of military standards. In the current study, assessment of the behavior of a “hollow” countermeasure in the form of a depressed steel false floor panel attached with spot-welds along flanges to a typical predominantly flat floor panel of a car is initially carried out with an explicit LS-DYNA solver. This is followed up with the evaluation of PU (polyurethane) foam-filled and liquid-filled false floor countermeasures. In all cases, a charge is detonated under the false floor subjecting it to a high-energy shock pressure loading.
Technical Paper

Chassis Lightweight Hole Placement with Weldline Evaluation

2021-01-07
2020-01-5217
Vehicle weight-driven design comes amid rising higher fuel efficiency standards and must meet the criteria—pass proving ground (PG) test events that are equivalent to customer usage. Computer-aided engineering (CAE) fatigue analysis for PG is a successful push behind to digitally simulate vehicle durability performance with high fidelity. The need for vehicle weight reduction often arises in the vehicle development final phases when CAE methods, time, and tangible cost-effective opportunities are limited or nonexistent. In this research, a new CAE methodology is developed to identify opportunities for lightweight hole placement in the chassis structure and deliver a cost-effective lightweight solution with no additional impact on fatigue life. The successful application of this new methodology exhibits the effectiveness of the truck frame, which is the key chassis structure to support the body, suspension, and powertrain.
Technical Paper

Investigation of Fuel Condensation Processes under Non-reacting Conditions in an Optically-Accessible Engine

2019-04-02
2019-01-0197
Engine experiments have revealed the importance of fuel condensation on the emission characteristics of low temperature combustion. However, direct in-cylinder experimental evidence has not been reported in the literature. In this paper, the in-cylinder condensation processes observed in optically accessible engine experiments are first illustrated. The observed condensation processes are then simulated using state-of-the-art multidimensional engine CFD simulations with a phase transition model that incorporates a well-validated phase equilibrium numerical solver, in which a thermodynamically consistent phase equilibrium analysis is applied to determine when mixtures become unstable and a new phase is formed. The model utilizes fundamental thermodynamics principles to judge the occurrence of phase separation or combination by minimizing the system Gibbs free energy.
Journal Article

An Exploration of Jute-Polyester Composite for Vehicle Head Impact Safety Countermeasures

2018-04-03
2018-01-0844
Natural fiber-reinforced composites are currently gaining increasing attention as potential substitutes to pervasive synthetic fiber-reinforced composites, particularly glass fiber-reinforced plastics (GFRP). The advantages of the former category of composites include (a) being conducive to occupational health and safety during fabrication of parts as well as handling as compared to GFRP, (b) economy especially when compared to carbon fiber-reinforced composites (CFRC), (c) biodegradability of fibers, and (d) aesthetic appeal. Jute fibers are especially relevant in this context as jute fabric has a consistent supply base with reliable mechanical properties. Recent studies have shown that components such as tubes and plates made of jute-polyester (JP) composites can have competitive performance under impact loading when compared with similar GFRP-based structures.
Technical Paper

One-Dimensional Modelling and Analysis of Thermal Barrier Coatings for Reduction of Cooling Loads in Military Vehicles

2018-04-03
2018-01-1112
There is a general interest in the reduction of cooling loads in military vehicles. To that end thermal barrier coatings (TBCs) are being studied for their potential as insulators, particularly for military engines. The effectiveness of TBCs is largely dependent on their thermal properties, however insulating effects can also be modified by applying different coating thickness. Convection from in-cylinder surfaces can also be affected by manipulation of surface structure. Although most prior studies have examined TBCs as a means of increasing efficiency, military vehicle design is primarily concerned with the reduction of cylinder heat transfer to allow downsizing of cooling systems. A 1-D transient conjugate heat transfer model was developed to provide insight into the effects of different TBC designs and material selection on cooling loads. Results identify low thermal conductivity and low thermal capacitance as key parameters in achieving optimal heat loss reduction.
Technical Paper

Effect of Strain Rate on Mechanical Responses of Jute-Polyester Composites

2017-03-28
2017-01-1467
There has been a keen interest in recent times on implementation of lightweight materials in vehicles to bring down the unladen weight of a vehicle for enhancing fuel efficiency. Fiber-reinforced composites comprise a class of such materials. As sustainability is also a preoccupation of current product development engineers including vehicle designers, bio-composites based on natural fibers are receiving a special attention. Keeping these motivations of lower effective density, environment friendliness and occupational safety in mind, woven jute fabric based composites have been recently studied as potential alternatives to glass fiber composites for structural applications in automobiles. In the past, mechanical characterization of jute-polyester composites were restricted to obtaining their stress-strain behaviors under quasi-static conditions.
Technical Paper

Numerical Investigation of Active and Passive Cooling Systems of a Lithium-Ion Battery Module for Electric Vehicles

2016-04-05
2016-01-0655
In this work, a pseudo three-dimensional coupled thermal-electrochemical model is established to estimate the heat generation and temperature profiles of a lithium ion battery as functions of the state of the discharge. Then, this model is used to investigate the effectiveness of active and passive thermal management systems. The active cooling system utilizes cooling plate and water as the working fluid while the passive cooling system incorporates a phase change material (PCM). The thermal effects of coolant flow rate examined using a computational fluid dynamics model. In the passive cooling system, Paraffin wax used as a heat dissipation source to control battery temperature rise. The effect of module size and battery spacing is studied to find the optimal weight of PCM required. The results show that although the active cooling system has the capability to reduce the peak temperatures, it leads to a large temperature difference over the battery module.
Technical Paper

A Methodology for Prediction of Periprosthetic Injuries in Occupants with TKR Implants in Vehicle Crashes

2016-04-05
2016-01-1529
Periprosthetic fractures refer to the fractures that occur in the vicinity of the implants of joint replacement arthroplasty. Most of the fractures during an automotive frontal collision involve the long bones of the lower limbs (femur and tibia). Since the prevalence of persons living with lower limb joint prostheses is increasing, periprosthetic fractures that occur during vehicular accidents are likely to become a considerable burden on health care systems. It is estimated that approximately 4.0 million adults in the U.S. currently live with Total Knee Replacement (TKR) implants. Therefore, it is essential to study the injury patterns that occur in the long bone of a lower limb containing a total knee prosthesis. The aim of the present study is to develop an advanced finite element model that simulates the possible fracture patterns that are likely during vehicular accidents involving occupants who have knee joint prostheses in situ.
Technical Paper

An Experimental and Computational Investigation of Water Condensation inside the Tubes of an Automotive Compact Charge Air Cooler

2016-04-05
2016-01-0224
To address the need of increasing fuel economy requirements, automotive Original Equipment Manufacturers (OEMs) are increasing the number of turbocharged engines in their powertrain line-ups. The turbine-driven technology uses a forced induction device, which increases engine performance by increasing the density of the air charge being drawn into the cylinder. Denser air allows more fuel to be introduced into the combustion chamber, thus increasing engine performance. During the inlet air compression process, the air is heated to temperatures that can result in pre-ignition resulting and reduced engine functionality. The introduction of the charge air cooler (CAC) is therefore, necessary to extract heat created during the compression process. The present research describes the physics and develops the optimized simulation method that defines the process and gives insight into the development of CACs.
Technical Paper

Design and Simulation of Lithium-Ion Battery Thermal Management System for Mild Hybrid Vehicle Application

2015-04-14
2015-01-1230
It is well known that thermal management is a key factor in design and performance analysis of Lithium-ion (Li-ion) battery, which is widely adopted for hybrid and electric vehicles. In this paper, an air cooled battery thermal management system design has been proposed and analyzed for mild hybrid vehicle application. Computational Fluid Dynamics (CFD) analysis was performed using CD-adapco's STAR-CCM+ solver and Battery Simulation Module (BMS) application to predict the temperature distribution within a module comprised of twelve 40Ah Superior Lithium Polymer Battery (SLPB) cells connected in series. The cells are cooled by air through aluminum cooling plate sandwiched in-between every pair of cells. The cooling plate has extended the cooling surface area exposed to cooling air flow. Cell level electrical and thermal simulation results were validated against experimental measurements.
Technical Paper

An Alternative Approach for Formulation of a Crushable PU Foam Considering its Behavior under Compressive Loads

2015-04-14
2015-01-1483
Rigid polyurethane (PU) foam finds wide applications as a lightweight material in impact safety design such as improving occupant safety in vehicle crashes. The two principal reacting compounds for formulating such foam are variants of polyol and isocyanate. In the present study, an alternative mechanical engineering-based approach for determining, with confidence, the desirable ratio of reacting compounds for formulation of a rigid/crushable PU foam for mechanical applications is demonstrated. According to the present approach, PU foam samples are prepared by varying the mixing ratio over a wide range. The desirable mixing ratio is shown to be the one that optimizes key mechanical properties under compression such as total absorbed energy, specific absorbed energy and energy absorption efficiency.
Technical Paper

Efficient Thermal Modeling and Integrated Control Strategy of Powertrain for a Parallel Hybrid EcoCAR2 Competition Vehicle

2014-04-01
2014-01-1927
Hybrid electric vehicle (HEV) is one of the most highly pursued technologies for improving energy efficiency while reducing harmful emissions. Thermal modeling and control play an ever increasing role with HEV design and development for achieving the objective of improving efficiency, and as a result of additional thermal loading from electric powertrain components such as electric motor, motor controller and battery pack. Furthermore, the inherent dual powertrains require the design and analysis of not only the optimal operating temperatures but also control and energy management strategies to optimize the dynamic interactions among various components. This paper presents a complete development process and simulation results for an efficient modeling approach with integrated control strategy for the thermal management of plug-in HEV in parallel-through-the road (PTTR) architecture using a flexible-fuel engine running E85 and a battery pack as the energy storage system (ESS).
Technical Paper

ESS Design Process Overview and Key Outcomes of Year Two of EcoCAR 2: Plugging in to the Future

2014-04-01
2014-01-1922
EcoCAR 2: Plugging in to the Future (EcoCAR) is North America's premier collegiate automotive engineering competition, challenging students with systems-level advanced powertrain design and integration. The three-year Advanced Vehicle Technology Competition (AVTC) series is organized by Argonne National Laboratory, headline sponsored by the U. S. Department of Energy (DOE) and General Motors (GM), and sponsored by more than 30 industry and government leaders. Fifteen university teams from across North America are challenged to reduce the environmental impact of a 2013 Chevrolet Malibu by redesigning the vehicle powertrain without compromising performance, safety, or consumer acceptability. During the three-year program, EcoCAR teams follow a real-world Vehicle Development Process (VDP) modeled after GM's own VDP. The EcoCAR 2 VDP serves as a roadmap for the engineering process of designing, building and refining advanced technology vehicles.
Technical Paper

Optimization for Plug-In Vehicles - Waste Heat Recovery from the Electric Traction Motor

2014-04-01
2014-01-1921
The Wayne State University (WSU) EcoCAR2 student team is investigating powertrain optimizations as a part of their participation in the EcoCAR2 design competition for the conversion of a 2013 Chevrolet Malibu into a plug-in hybrid. EcoCAR2 is the current three-year Department of Energy (DoE) Advanced Vehicle Technical Competition (AVTC) for 15 select university student teams competing on designing, building, and then optimizing their Plug-In Hybrid conversions of GM donated vehicles. WSU's powertrain design provides for approximately 56-64 km (35-40 miles) of electric driving before the Internal Combustion Engine (ICE) powertrain is needed. When the ICE is started, the ICE traditionally goes through a cold start with the engine, transmission, and final drive all at ambient temperature. The ICE powertrain components are most efficient when warmed up to their normal operating temperature, typically around 90-100 °C.
Technical Paper

Investigation of Low-Temperature Combustion in an Optical Engine Fueled with Low Cetane Sasol JP-8 Fuel Using OH-PLIF and HCHO Chemiluminescence Imaging

2013-04-08
2013-01-0898
Low cetane JP-8 fuels have been identified as being difficult to use under conventional diesel operation. However, recent focus on low-temperature combustion (LTC) modes has led to an interest in distillate hydrocarbon fuels having high volatility and low autoignition tendency. An experimental study is performed to evaluate low-temperature combustion processes in a small-bore optically-accessible diesel engine operated in a partially-premixed combustion mode using low-cetane Sasol JP-8 fuel. This particular fuel has a cetane number of 25. Both single and dual injection strategies are tested. Since long ignition delay is a consequence of strong autoignition resistance, under the conditions examined, low cetane Sasol JP-8 combustion can only take place with a double injection strategy: one pilot injection event in the vicinity of exhaust TDC and one main injection event near firing TDC.
Technical Paper

HMI Design for Increasing Vehicle Energy Efficiency by Affecting Driving Habits

2013-04-08
2013-01-0570
Wayne State University EcoCAR2 team is designing and modifying a GM-donated Chevrolet Malibu 2013 to a Parallel-Through-The-Road (PTTR) plug-in hybrid. A Freescale-donated Center Stack Unit (CSU) touchscreen display is used for Human Machine Interface (HMI). Surveys were conducted to better understand CSU functionality expectations. One required function was increasing driving efficiency. Other hybrid and electric vehicles HMI systems present driving and environmental settings efficiencies such as average fuel economy, lifetime fuel economy, electric charge used, fuel used, distances driven on each power source, instantaneous power gauge and instantaneous driver efficiency gauge. These offer drivers a large sum of information but with no provision to analyze and improve one's driving habits unless one has the required knowledge to understand the causes behind the values presented.
Journal Article

An Innovative Modeling Approach to Thermal Management using Variable Fidelity Flow Network Models Imbedded in a 3D Analysis

2011-04-12
2011-01-1048
Speed and accuracy are the critical needs in software for the modeling and simulation of vehicle cooling systems. Currently, there are two approaches used in commercially available thermal analysis software packages: 1) detailed modeling using complex and sophisticated three-dimensional (3D) heat transfer and computational fluid dynamics, and 2) rough modeling using one-dimensional (1D) simplistic network solvers (flow and thermal) for quick prediction of flow and thermal fields. The first approach offers accuracy at the cost of speed, while the second approach provides the simulation speed, sacrificing accuracy and can possibly lead to oversimplification. Therefore, the analyst is often forced to make a choice between the two approaches, or find a way to link or couple the two methods. The linking between one-dimensional and three-dimensional models using separate software packages has been attempted and successfully accomplished for a number of years.
Journal Article

Deterioration of B20 from Compression Ignition Engine Operation

2010-10-25
2010-01-2120
Biodiesel has been widely accepted as an alternative for fossil-derived diesel fuel for use in compression ignition (CI) engines. Poor oxidative stability and cold flow properties restrict the use of biodiesel beyond current B20 blend levels (20% biodiesel in 80% ULSD) for vehicle applications. Maintaining the properties of B20 as specified by ASTM D7476-08 is important because, once out of spec, B20 may cause injector coke formation, fuel filter plugging, increased exhaust emissions, and overall loss of engine performance. While the properties of fresh B20 may be within the specifications, under engine operating and longer storage conditions B20 could deteriorate. In a diesel engine, the fuel that goes to the injector and does not enter the cylinder is recycled back to the fuel tank. The re-circulated fuel returns to the fuel tank at an elevate temperature, which can cause thermal oxidation.
Technical Paper

Occupant Compartment Updates for Side to Side Vibration in a Fuel Funny Car

2008-12-02
2008-01-2969
Nitro Fuel Funny cars have 7-8,000 hp and travel 330 mph in a quarter mile. These cars experience extreme forces in normal operation. One phenomenon familiar to drag racers is tire shake. Mild cases can cause loss of traction and vision. Extreme cases can cause injury or death. In March of 2007, a study and subsequent revision of the passenger compartment in a Fuel Funny car was performed after a fatal accident due to extreme tire shake. Tire shake on a drag race car normally occurs when the force on the rear tire causes the tire to roll over itself causing a loss of traction and side-to-side vibration. In other cases, if the tire fails at high speed, the tire may partially separate, causing an extreme vibration in the cockpit of the car. The vibration may set up a harmonic in the chassis, which is transferred to the driver since the rear end is bolted directly to the chassis with no suspension to absorb the energy.
X