Refine Your Search

Search Results

Viewing 1 to 13 of 13
Technical Paper

Pedestrian Dummy Pelvis Impact Responses

2009-04-20
2009-01-1214
In order to investigate pedestrian injury mechanism by representing whole body kinematics of a pedestrian, a pedestrian dummy (POLAR II) has been developed. Previous studies indicated that the original pelvis design needed to be modified from the comparison of POLAR II and PMHS (Post Mortem Human Subject) responses in a pedestrian impact test with a SUV (Sports Utility Vehicle). In addition, according to the results of an in-depth investigation of pedestrian versus SUV or mini-van accidents in the US, pelvis fracture was found to be most frequent in AIS 2+ pelvis and lower limb injuries. Based on these findings, the POLAR II pelvis was modified for improved biofidelity. The modified pelvis design incorporated the flexible ilium (polyacetal resin) and pubic symphysis (rubber material) as opposed to the original pelvis cast in aluminum. The modified pelvis responses were verified against published isolated pelvic PMHS test results in lateral compression of the pelvis.
Technical Paper

Development of Omni-directional Injury Criteria for a Pedestrian Dummy for Evaluating Rib Fracture

2009-04-20
2009-01-1210
Pedestrian - motor vehicle collisions account for approximately 15% of all traffic fatalities in Europe and the US, and 35% or more in Japan and Asian countries. Several studies have addressed this issue, such as the EEVC study. In the development of the test methods, body region priorities are mainly based on studies of pedestrian collisions with passenger vehicles. However recently, the populations of SUVs and LTVs are increasing in many countries. Pedestrian collision data indicate that thoracic and upper abdominal injuries are also frequent in pedestrian collisions where these kinds of vehicles are involved. However, evaluation methods for pedestrian torso injuries are not currently available. This paper describes a study for the evaluation of pedestrian thoracic and upper abdominal injuries using the POLAR II pedestrian dummy.
Journal Article

Estimation of Knee Ligament Injury Measures for a Pedestrian Dummy

2009-04-20
2009-01-1212
In order to enhance understanding of pedestrian injury mechanisms, full-body pedestrian dummies have been developed in past studies. The goal of this study was to estimate knee ligament injury measures for a pedestrian dummy based on the correlation between dummy and human responses. For estimating knee ligament force of the dummy approximating the average ligament failure, finite element (FE) human and dummy knee joint models were subjected to dynamic 4-point bending. The estimated measures for the modified dummy knee ligaments were 3.0, 0.5 and 1.1 kN for the MCL, PCL and ACL, respectively. A full-body FE dummy model was subjected to impacts from a small sedan and a Sport Utility Vehicle (SUV) for validating the estimated force levels. The results showed that the estimated dummy knee ligament force levels predicted failure of human knee ligaments that is likely to take place first when leg fractures are not present in impacts from a small sedan and a SUV.
Technical Paper

Biofidelity Improvements to the Polar-II Pedestrian Dummy Lower Extremity

2007-04-16
2007-01-0757
Experimental tests were performed on the modified Polar-II pedestrian dummy lower extremity components to evaluate their biofidelity in lateral impact loading corresponding to a 40 km/h pedestrian-car collision. The bending moment-angle response from a newly developed knee joint, dynamically loaded in four-point valgus bending, was compared against previously published postmortem human subject (PMHS) response corridors. In addition to the stiffness characteristics of the knee joint, individual ligament forces were also recorded during the bending tests. The evaluated force-relative elongation response of the medial collateral ligament (MCL) in the new knee was compared against PMHS data on MCL tensile stiffness. Lower extremity long bones developed for improved anthropometrical accuracy and deformability were dynamically loaded in latero-medial three-point bending.
Technical Paper

Development and Validation of a Finite Element Model for the Polar-II Upper Body

2006-04-03
2006-01-0684
The goal of this study was to develop and validate a finite element (FE) model of the Polar-II pedestrian dummy. An upper body model consisting of the head, neck, shoulder, thorax, and abdomen was coupled with a previously validated model of the lower limb The viscoelastic material properties of the dummy components were determined from dynamic compression tests of shoulder urethane, shoulder rubber and abdominal foam. For validation of the entire upper body, the model was compared with NHTSA response requirements for their advanced frontal dummy (Thor) including head and neck pendulum tests as well as ribcage and abdominal impact tests. In addition, the Polar-II full body FE model was subjected to simulated vehicle-pedestrian impacts that recreated published experiments. Simulated head and pelvis accelerations as well as upper body trajectories reasonably reproduced the experiment.
Technical Paper

Design of Temperature Insensitive Ribs for Crash Test Dummies

2003-03-03
2003-01-0502
The Isodamp damping material (also known as Navy Damp) used in the ribs of current crash test dummies provides human-like damping to the thorax under impact. However, the range of temperature over which it can be used is very small. A new rib design using laminates of steel, fiberglass, and commercially available viscoelastic material has been constructed. Load-deflection response and hysteresis of the laminated ribs were compared with corresponding conventional ribs fabricated from steel and Isodamp. Impact tests were conducted on laminated and conventional ribs at 18.5° C, 22.2° C and 26.6° C. Results indicate that the response of the laminated ribs is essentially the same as that of the ribs with Isodamp at 22.2° C, which is the operating temperature of the conventional ribs. The variation in the impact response of the newly developed laminated ribs in the temperature range of 18.5° C to 26.6° C was less than 10%.
Technical Paper

Development of THOR-FLx: A Biofidelic Lower Extremity for Use with 5th Percentile Female Crash Test Dummies

2002-11-11
2002-22-0014
A new lower leg/ankle/foot system has been designed and fabricated to assess the potential for lower limb injuries to small females in the automotive crash environment. The new lower extremity can be retrofitted at present to the distal femur of the 5th percentile female Hybrid III dummy. Future plans are for integration of this design into the 5th percentile female THOR dummy now under development. The anthropometry of the lower leg and foot is based mainly on data developed by Robbins for the 5th percentile female, while the biomechanical response requirements are based upon scaling of 50th percentile male THOR-Lx responses. The design consists of the knee, tibia, ankle joints, foot, a representation of the Achilles tendon, and associated flesh/skins. The new lower extremity, known as THOR-FLx, is designed to be biofidelic under dynamic axial loading of the tibia, static and dynamic dorsiflexion, static plantarflexion and inversion/eversion.
Technical Paper

Development and application of the new pedestrian dummy

2001-06-04
2001-06-0048
A new pedestrian dummy, called ""POLAR'' has been recently developed. It can be used as a tool not only for the investigation of the mechanism of pedestrian accidents, but also for the assessment of vehicle aggressiveness to pedestrians. This dummy is modified from "'THOR,'' new- generation occupant dummy, in its body structure to reproduce human body kinematics in the event of collision with a vehicle more precisely. Its knee has a human-like structure, with condyles which shape is similar to that of human knee, meniscus, cruciate ligaments and collateral ligaments. Tibias of Polar are made of urethane which bending characteristic is that of human tibia. These features not only make the lateral bending and shearing responses of the leg and knee more human-like but also the whole body kinematics more human- like.
Technical Paper

A STUDY OF THE UPPER LEG COMPONENT TESTS COMPARED WITH PEDESTRIAN DUMMY TESTS

2001-06-04
2001-06-0235
The upper leg component test proposed by EEVC WG17 is one of the tools for the evaluation of upper leg injuries in pedestrian accidents. Meeting the injury criteria set by EEVC for the upper legform impact test is one of the biggest challenges we can find in the reports. This problem was studied in previous papers using simulation models or reconstruction of pedestrian accidents. The POLAR pedestrian dummy was constructed by HONDA R&D and GESAC INC., and some crash tests were conducted with it. The object of this study is to compare EEVC WG17 upper legform impact test conditions for utility vehicles with the full dummy test results. To reconstruct the deformation resulting from tests using the POLAR, the impact energy for the EEVC upper legform impact test should be decreased. Even the upper limit of 700J is too high. Accident data analysis shows that the pelvis is the body part injured by the bonnet leading edge of the utility vehicle.
Technical Paper

Foundations and elements of the NHTSA Thor ALPHA ATD design

2001-06-04
2001-06-0107
Early influences upon Thor ATD development are described, and the path of Thor development is traced up to the release of the current Thor ALPHA ATD design. Since the display of the first Thor ATD prototype at the 15th ESV Conference in Melbourne in 1996, Thor has undergone extensive test and evaluation on an international basis in cooperation with many partner institutions. This paper summarizes some of the lessons learned from this broad test experience, and documents actions which have been undertaken to upgrade the Thor product to ALPHA status in light of this experience.
Technical Paper

Development and Design of Thor-Lx: The Thor Lower Extremity

1999-10-10
99SC09
A new lower extremity has been developed to be used with Thor, the NHTSA Advanced Frontal Dummy. The new lower extremity, known as Thor-Lx, consists of the femur, tibia, ankle joints, foot, a representation of the Achilles' tendon and the associated flash/skins, it has been designed to improve biomechanical response under axial loading of the femur during knee impacts, axial loading of the tibia, static and dynamic dorsiflexion, static plantarflexion and inversion/aversion. Instrumentation includes a standard Hybrid ill femur load cell, accelerometers, load cells, and rotary potentiometers to capture relevant kinematic and dynamic information from the foot and tibia. The design also allows the Tnor-Lx to be attached to the Hybrid III, either at the hip, or at the knee.
Technical Paper

Development of Simulation Model and Pedestrian Dummy

1999-03-01
1999-01-0082
Honda has been studying ways of improving vehicle design to reduce the severity of pedestrian injury. Full-scale test using a pedestrian dummy is an important way to assess the aggressiveness of a vehicle to pedestrians. However, from test results it is concluded that current pedestrian dummies have stiffer characteristics than Post Mortem Human Subjects (PMHS). Also, the dummy kinematics during a collision is different from that of a human body. Because of the limitations of current dummies, it was decided to develop a new pedestrian dummy. At the first stage of the project, a computer simulation model that represented the PMHS tests was developed. Joint characteristics obtained from the simulation model were used in building a new pedestrian dummy which has been named Polar I. The advanced frontal crash test dummy, known as Thor, was selected as the base dummy. Modifications were made for the thorax, spine, knee etc.
Technical Paper

Safety of Side Facing Seats in General Aviation Aircraft

1995-05-01
951164
The motion of occupants seated in a typical side facing seat in a general transport aircraft was analyzed using the DYNAMAN simulation program. This paper presents the results of the first phase of the study, where simulations were performed to validate the computer model against a set of tests performed at CAMI using Hybrid II and Hybrid III dummies. There was usually good agreement between test and simulation of the pelvic and chest accelerations, and right side lap belt and shoulder belt loads. The head accelerations tended to be underestimated and the neck and pelvic loads and moments overestimated in the simulations. The only injury parameter which consistently exceeded the tolerance value was the lateral moment at the head-neck junction.
X