Refine Your Search

Topic

Search Results

Journal Article

Research on Speed Guidance Strategy at Continuous Signal Intersection Based on Vehicle–Road Coordination Technology

2024-04-13
Abstract With the rapid growth of automobile ownership, traffic congestion has become a major concern at intersections. In order to alleviate the blockage of intersection traffic flow caused by signals, reduce the length of vehicle congestion and waiting time, and for improving the intersection access efficiency, therefore, this article proposes a vehicle speed guidance strategy based on the intersection signal change by combining the vehicle–road cooperative technology. The randomness of vehicle traveling speed in the road is being considered. According to the vehicle traveling speed, a speed guidance model is established under different conditions.
Journal Article

Design and Application of Electronic Toll Collection Special Situation Processing System

2024-04-01
Abstract In 2018, the state explicitly proposed to “promote the cancellation of expressway toll stations at provincial boundaries.” Electronic toll collection has become the main toll collection method on expressways. With the construction of ETC toll lanes, the proportion of ETC vehicles in the expressway traffic flow is increasing, and the rapid processing of vehicle special situations is facing challenges. At present, various provinces have adopted various methods to improve the traffic efficiency and transaction success rate of ETC from the issuance link, customer service link, and lane transaction link. According to statistical data, the average transaction success rate of ETC lane is not higher than 99% at present. As of October 2021, the number of ETC users nationwide has reached 256 million, and there are an average of 40 million ETC transactions per day across the network, that is, about 400,000 special cases need to be processed.
Journal Article

Employing a Model of Computation for Testing and Verifying the Security of Connected and Autonomous Vehicles

2024-03-05
Abstract Testing and verifying the security of connected and autonomous vehicles (CAVs) under cyber-physical attacks is a critical challenge for ensuring their safety and reliability. Proposed in this article is a novel testing framework based on a model of computation that generates scenarios and attacks in a closed-loop manner, while measuring the safety of the unit under testing (UUT), using a verification vector. The framework was applied for testing the performance of two cooperative adaptive cruise control (CACC) controllers under false data injection (FDI) attacks. Serving as the baseline controller is one of a traditional design, while the proposed controller uses a resilient design that combines a model and learning-based algorithm to detect and mitigate FDI attacks in real-time.
Journal Article

Weld Fatigue Damage Assessment of Rail Track Maintenance Equipment: Regulatory Compliance and Practical Insights

2024-03-04
Abstract The use of appropriate loads and regulations is of great importance in weld fatigue assessment of rail on-track maintenance equipment and similar vehicles for optimized design. The regulations and available loads, however, are often generalized for several categories, which proves to be overly conservative for some specific categories of machines. EN (European Norm) and AAR (Association of American Railroads) regulations play a pivotal role in determining the applicable loads and acceptance criteria within this study. The availability of track-induced fatigue load data for the cumulative damage approach in track maintenance machines is often limited. Consequently, the FEA-based validation of rail track maintenance equipment often resorts to the infinite life approach rather than cumulative damage approach for track-induced travel loads, resulting in overly conservative designs.
Journal Article

Computational Investigation of a Flexible Airframe Taxiing Over an Uneven Runway for Aircraft Vibration Testing

2023-12-15
Abstract Ground vibration testing (GVT) is an important phase of the development, or the structural modification of an aircraft program. The modes of vibration and their associated parameters extracted from the GVT are used to modify the structural model of the aircraft to make more reliable dynamics predictions to satisfy certification authorities. Due to the high cost and the extensive preparations for such tests, a new method of vibration testing called taxi vibration testing (TVT) rooted in operational modal analysis (OMA) was recently proposed and investigated by the German Institute for Aerospace Research (DLR) as alternative to conventional GVT. In this investigation, a computational framework based on fully coupled flexible multibody dynamics for TVT is presented to further investigate the applicability of the TVT to flexible airframes. The time domain decomposition (TDD) method for OMA was used to postprocess the response of the airframe during a TVT.
Journal Article

Speedy Hierarchical Eco-Planning for Connected Multi-Stack Fuel Cell Vehicles via Health-Conscious Decentralized Convex Optimization

2023-12-04
Abstract Connected fuel cell vehicles (C-FCVs) have gained increasing attention for solving traffic congestion and environmental pollution issues. To reduce operational costs, increase driving range, and improve driver comfort, simultaneously optimizing C-FCV speed trajectories and powertrain operation is a promising approach. Nevertheless, this remains difficult due to heavy computational demands and the complexity of real-time traffic scenarios. To resolve these issues, this article proposes a two-level eco-driving strategy consisting of speed planning and energy management layers. In the top layer, the speed planning predictor first predicts dynamic traffic constraints using the long short-term memory (LSTM) model. Second, a model predictive control (MPC) framework optimizes speed trajectories under dynamic traffic constraints, considering hydrogen consumption, ride comfort, and traffic flow efficiency.
Journal Article

A Tutorial on V2I Communication: Evaluating the LTE-V2X for Day-1 V2I and V2V Integration in Congested Scenarios

2023-11-29
Abstract Because of the growing interest in LTE-V2X, there is a need to describe its performance under various conditions and scenarios. This article explores the deployment of long-term evolution vehicle-to-everything (LTE-V2X) technology for vehicle-to-infrastructure (V2I) communication and delves into the deployment of LTE-V2X communication in three major global regions: the United States, Europe, and China. We begin with an overview of the functionality of LTE-V2X and highlight the objectives of V2I communication in terms of safety and mobility applications—and describe why it will be the predominant type of V2X in the first few years of deployment. We also examine the specific Day-1 V2I message sets standardized in each region, along with their potential applications and benefits. The technical details and use cases using these messages are discussed, along with the benefits they offer in improving the accuracy, reliability, and safety for surface transportation.
Journal Article

Power-Efficient and Trustworthy Data Dissemination for Social Vehicle Associations in the Internet of Vehicles

2023-11-21
Abstract In modern era, with the global spread of massive devices, connecting, controlling, and managing a significant amount of data in the IoT environment, especially in the Internet of vehicles (IoV) is a great challenge. There is a big problem of high-energy consumption due to overhead-unwanted data communication to the non-participatory vehicles, at high enduring connection rate. Therefore, this article proposed a social vehicle association-based data dissemination approach, which was segregated into three parts: First, develop an improved power evaluation approach for discovering power-efficient vehicles. Second, using the Fokker–Planck equation, the connection likelihood of these vehicles is calculated in the second phase to find trustworthy and steady connections. Last, develop an evaluation approach for vehicles community association using convolutional neural network (CNN).
Journal Article

A Comparative Study of Longitudinal Vehicle Control Systems in Vehicle-to-Infrastructure Connected Corridor

2023-11-16
Abstract Vehicle-to-infrastructure (V2I) connectivity technology presents the opportunity for vehicles to perform autonomous longitudinal control to navigate safely and efficiently through sequences of V2I-enabled intersections, known as connected corridors. Existing research has proposed several control systems to navigate these corridors while minimizing energy consumption and travel time. This article analyzes and compares the simulated performance of three different autonomous navigation systems in connected corridors: a V2I-informed constant acceleration kinematic controller (V2I-K), a V2I-informed model predictive controller (V2I-MPC), and a V2I-informed reinforcement learning (V2I-RL) agent. A rules-based controller that does not use V2I information is implemented to simulate a human driver and is used as a baseline. The performance metrics analyzed are net energy consumption, travel time, and root-mean-square (RMS) acceleration.
Journal Article

Pedestrian Intention Prediction and Style Recognition in Bird’s-Eye View

2023-11-16
Abstract In this article, pedestrian crossing intention and pedestrian crossing style are studied by means of statistical theory and artificial neural network. Feature parameters such as the average speed of pedestrians, pedestrian attention to vehicles, and vehicle arrival speed are extracted before and during the time pedestrians cross the street from a bird’s-eye view. Based on these parameters, an artificial neural network is used to predict the pedestrian crossing intention. K-means statistical method was used to cluster the pedestrian crossing styles, and the results showed that clustering the crossing styles into three categories, conservative, cautious, and adventurous, has a better classification effect, and the crossing behaviors of different types of pedestrians were analyzed. A random forest-based model is used to identify pedestrian crossing styles, the prediction accuracy reaches 91.83% and the recognition accuracy reaches 93.3%.
Journal Article

Performance Analysis of Cooperative Truck Platooning under Commercial Operation during Canadian Winter Season

2023-11-14
Abstract The cooperative platoon of multiple trucks with definite proximity has the potential to enhance traffic safety, improve roadway capacity, and reduce fuel consumption of the platoon. To investigate the truck platooning performance in a real-world environment, two Peterbilt class-8 trucks equipped with cooperative truck platooning systems (CTPS) were deployed to conduct the first-of-its-kind on-road commercial trial in Canada. A total of 41 CTPS trips were carried out on Alberta Highway 2 between Calgary and Edmonton during the winter season in 2022, 25 of which were platooning trips with 3 to 5 sec time gaps. The platooning trips were performed at ambient temperatures from −24 to 8°C, and the total truck weights ranged from 16 to 39 tons. The experimental results show that the average time gap error was 0.8 sec for all the platooning trips, and the trips with the commanded time gap of 5 sec generally had the highest variations.
Journal Article

Enhancing Autonomous Vehicle Safety in Cold Climates by Using a Road Weather Model: Safely Avoiding Unnecessary Operational Design Domain Exits

2023-10-28
Abstract This study investigates the use of a road weather model (RWM) as a virtual sensing technique to assist autonomous vehicles (AVs) in driving safely, even in challenging winter weather conditions. In particular, we investigate how the AVs can remain within their operational design domain (ODD) for a greater duration and minimize unnecessary exits. As the road surface temperature (RST) is one of the most critical variables for driving safety in winter weather, we explore the use of the vehicle’s air temperature (AT) sensor as an indicator of RST. Data from both Road Weather Information System (RWIS) stations and vehicles measuring AT and road conditions were used. Results showed that using only the AT sensor as an indicator of RST could result in a high number of false warnings, but the accuracy improved significantly with the use of an RWM to model the RST.
Journal Article

Reference Generator for a Platoon of Position-Controlled Vehicles on a Curved Path

2023-10-09
Abstract Vehicular automation in the form of a connected and automated vehicle platoon is demanding as it aims to increase traffic flow and driver safety. Controlling a vehicle platoon on a curved path is challenging, and most solutions in the existing literature demonstrate platooning on a straight path or curved paths at constant speeds. This article proposes an algorithmic solution with leader-following (LF) communication topology and constant distance (CD) spacing for platooning homogeneous position-controlled vehicles (PCVs) on a curved path, with each vehicle capable of cornering at variable speeds. The lead vehicle communicates its reference position and orientation to all the follower vehicles. A follower vehicle stores this information as a virtual trail of the lead vehicle for a specific period. An algorithm uses this trail to find the follower vehicle’s reference path by solving an optimization problem.
Journal Article

A Deep Neural Network Attack Simulation against Data Storage of Autonomous Vehicles

2023-09-29
Abstract In the pursuit of advancing autonomous vehicles (AVs), data-driven algorithms have become pivotal in replacing human perception and decision-making. While deep neural networks (DNNs) hold promise for perception tasks, the potential for catastrophic consequences due to algorithmic flaws is concerning. A well-known incident in 2016, involving a Tesla autopilot misidentifying a white truck as a cloud, underscores the risks and security vulnerabilities. In this article, we present a novel threat model and risk assessment (TARA) analysis on AV data storage, delving into potential threats and damage scenarios. Specifically, we focus on DNN parameter manipulation attacks, evaluating their impact on three distinct algorithms for traffic sign classification and lane assist.
Journal Article

Robust Multiagent Reinforcement Learning toward Coordinated Decision-Making of Automated Vehicles

2023-09-04
Abstract Automated driving is essential for developing and deploying intelligent transportation systems. However, unavoidable sensor noises or perception errors may cause an automated vehicle to adopt suboptimal driving policies or even lead to catastrophic failures. Additionally, the automated driving longitudinal and lateral decision-making behaviors (e.g., driving speed and lane changing decisions) are coupled, that is, when one of them is perturbed by unknown external disturbances, it causes changes or even performance degradation in the other. The presence of both challenges significantly curtails the potential of automated driving. Here, to coordinate the longitudinal and lateral driving decisions of an automated vehicle while ensuring policy robustness against observational uncertainties, we propose a novel robust coordinated decision-making technique via robust multiagent reinforcement learning.
Journal Article

Concept, Implementation, and Performance Comparison of a Particle Filter for Accurate Vehicle Localization Using Road Profile Data

2023-08-25
Abstract A precise knowledge of the road profile ahead of the vehicle is required to successfully engage a proactive suspension control system. If this profile information is generated by preceding vehicles and stored on a server, the challenge that arises is to accurately determine one’s own position on the server profile. This article presents a localization method based on a particle filter that uses the profile observed by the vehicle to generate an estimated longitudinal position relative to the reference profile on the server. We tested the proposed algorithm on a quarter vehicle test rig using real sensor data and different road profiles originating from various types of roads. In these tests, a mean absolute position error of around 1 cm could be achieved. In addition, the algorithm proved to be robust against local disturbances, added noise, and inaccurate vehicle speed measurements.
Journal Article

Optimizing Hydrogen Fueling Infrastructure Plans on Freight Corridors for Heavy-Duty Fuel Cell Electric Vehicles

2023-08-12
Abstract The development of a future hydrogen energy economy will require the development of several hydrogen market and industry segments including a hydrogen-based commercial freight transportation ecosystem. For a sustainable freight transportation ecosystem, the supporting fueling infrastructure and the associated vehicle powertrains making use of hydrogen fuel will need to be co-established. This article introduces the OR-AGENT (Optimal Regional Architecture Generation for Electrified National Transportation) tool developed at the Oak Ridge National Laboratory, which has been used to optimize the hydrogen refueling infrastructure requirements on the I-75 corridor for heavy-duty (HD) fuel cell electric commercial vehicles (FCEV).
Journal Article

Effect of Platoon Configurations on the Anti-Disturbing Performance

2023-08-10
Abstract In order to promote the actual application of the vehicular platoon, this study investigates the effect of the specific platoon configurations including predecessor following (PF), predecessor–leader following (PLF), and bidirectional following (BD), on the anti-disturbing performance from the linear to nonlinear perspective. First, based on the method of sensitivity of error propagation to the disturbance, a linear platoon model is established by considering an individual vehicle as a lumped-mass point. Then, the transfer function matrix from disturbance to spacing error is derived for sensitivity analysis. Finally, especially considering the inherent vehicle dynamics, the Burckhardt tire force model is adopted to construct a nonlinear platoon dynamics model for the nonlinear dynamics analysis. The results reveal the characteristics of each platoon configuration, as well as the design of control gains in terms of the anti-disturbing performance.
X