Refine Your Search

Topic

Search Results

Journal Article

The Effect of Unsteady Incident Flow on Drag Measurements for Different Vehicle Geometries in an Open Jet Wind Tunnel

2022-03-29
2022-01-0894
Automotive engineers use the wind tunnel to improve a vehicle’s aerodynamic properties on the road. However, a car driving on the road does not experience the steady-state, uniform flow characteristic of the wind tunnel. Wind, terrain and traffic all cause the flow experienced by the vehicle to be highly transient. Therefore, it is imperative to understand the effects of forces acting on the vehicle resulting from unsteady flow. To this end, the FKFS swing® installed in the University of Stuttgart’s model scale wind tunnel was used to create 36 different incident flow signals with time-resolved yaw angles. The cD values of five different 25% vehicle models, each with a notchback and a squareback configuration, were measured while under the influence of the aforementioned signals. The vehicle models were chosen to ensure a variety of different geometries, but at the same time also to enable isolated comparison of specific geometric properties.
Technical Paper

Influence of Open-Jet Effects on Vehicle Wind Tunnel Measurements

2021-02-15
2021-01-5014
The wind tunnel is the standard tool in the development and improvement of vehicle aerodynamics. Usually, automotive wind tunnels contain an open test section, which results in a shear layer developing on the edge of the jet. This shear layer brings instabilities that can lead to resonance effects in the wind tunnel influencing the pressure distribution in the test section. To investigate the resonance effects, the classic wind tunnel corrections were applied to averaged drag measurements recorded in a resonance and nonresonance configuration of the model scale wind tunnel of the University of Stuttgart. The Mercker-Wiedemann-Method shows good compensation for the differing pressure gradients. Pressure measurements on the surface of the DrivAer Notchback model show different separation points on the rear window for measurements in resonance and nonresonance configuration. This means that the resonance effects can influence the separation significantly.
Technical Paper

Thermal Behavior of an Electronics Compartment with Respect to Real Driving Conditions

2020-04-14
2020-01-1299
The reliability of electronic components is of increasing importance for further progress towards automated driving. Thermal aging processes such as electromigration is one factor that can negatively affect the reliability of electronics. The resulting failures depend on the thermal load of the components within the vehicle lifetime - called temperature collective - which is described by the temperature frequency distribution of the components. At present, endurance testing data are used to examine the temperature collective for electronic components in the late development stage. The use of numerical simulation tools within Vehicle Thermal Management (VTM) enables lifetime thermal prediction in the early development stage, but also represents challenges for the current VTM processes [1, 2]. Due to the changing focus from the underhood to numerous electronic compartments in vehicles, the number of simulation models has steadily increased.
Journal Article

Simulation of Transient On-Road Conditions in a Closed Test Section Wind Tunnel Using a Wing System with Active Flaps

2020-04-14
2020-01-0688
Typical automotive research in wind tunnels is conducted under idealized, stationary, low turbulence flow conditions. This does not necessarily reflect the actual situation in traffic. Thus, there is a considerable interest to simulate the actual flow conditions. Because of this, a system for the simulation of the turbulence intensity I, the integral linear scale L and the transient angle of incidence β measured in full-scale tests in the inflow of a test vehicle was developed and installed in a closed-loop, closed test section wind tunnel. The system consists of four airfoils with movable flaps and is installed in the beginning of the test section. Time-series of the flow velocity vector are measured in the empty test section to analyze the system’s envelope in terms of the turbulence intensity and the integral length scales.
Journal Article

Advances in Experimental Vehicle Soiling Tests

2020-04-14
2020-01-0681
The field of vision of the driver during wet road conditions is essential for safety at all times. Additionally, the safe use of the increasing number of sensors integrated in modern cars for autonomous driving and intelligent driver assistant systems has to be ensured even under challenging weather conditions. To fulfil these requirements during the development process of new cars, experimental and numerical investigations of vehicle soiling are performed. This paper presents the surface contamination of self- and foreign-soiling tested in the wind tunnel. For these type of tests, the fluorescence method is state-of-the-art and widely used for visualizing critical areas. In the last years, the importance of parameters like the contact angle have been identified when designing the experimental setup. In addition, new visualization techniques have been introduced.
Technical Paper

An Innovative Test System for Holistic Vehicle Dynamics Testing

2019-04-02
2019-01-0449
In the automotive industry, there is a continued need to improve the development process and handle the increasing complexity of the overall vehicle system. One major step in this process is a comprehensive and complementary approach to both simulation and testing. Knowledge of the overall dynamic vehicle behavior is becoming increasingly important for the development of new control concepts such as integrated vehicle dynamics control aiming to improve handling quality and ride comfort. However, with current well-established test systems, only separated and isolated aspects of vehicle dynamics can be evaluated. To address these challenges and further merge the link between simulation and testing, the Institute of Internal Combustion Engines and Automotive Engineering (IVK), University of Stuttgart is introducing a new Handling Roadway (HRW) Test System in cooperation with The Research Institute of Automotive Engineering and Vehicle Engines Stuttgart (FKFS) and MTS Systems Corporation.
Technical Paper

Introduction of the AeroSUV-A New Generic SUV Model for Aerodynamic Research

2019-04-02
2019-01-0646
Since the introduction of the DrivAer model, an increasing amount of aerodynamic research and CAE method development activities are based on this detailed generic car body. Due to the Open Access nature of the model, it has not only been quickly adopted by academia but also by several automotive OEMs and CAE software developers. The DrivAer has delivered high quality experimental data to permit validation of existing aerodynamic CAE capabilities and to accelerate the development of new sophisticated numerical methods. Within the last decades, the registration number of SUV, especially in Europe, has increased significantly. Among other things, a large cross-sectional area, an increased ground clearance and larger wheels characterize this kind of vehicle. The DrivAer is not capable of depicting this vehicle category. Therefore, there is a demand for an expansion of this generic vehicle concept.
Journal Article

Active Crosswind Generation and Its Effect on the Unsteady Aerodynamic Vehicle Properties Determined in an Open Jet Wind Tunnel

2018-04-03
2018-01-0722
In this article the unsteady aerodynamic properties of a 25% scale DrivAer notchback model as well as the influence of the wind tunnel environment on the resulting unsteady aerodynamic forces and moments under crosswind excitation are investigated using experimental and corresponding numerical methods. Research Institute of Automotive Engineering and Vehicle Engines Stuttgart (FKFS) swing® (side wind generator) is used to reproduce the essential properties of natural stochastic crosswind in the open jet test section of the Institute for Internal Combustion Engines and Automotive Engineering (IVK) model scale wind tunnel (MWK). The results show that the test environment of an open jet wind tunnel alters the amplitudes of side force and yaw moment under crosswind excitation when compared to an ideal environment neglecting wind tunnel interference effects.
Journal Article

New Motion Cueing Algorithm for Improved Evaluation of Vehicle Dynamics on a Driving Simulator

2017-03-28
2017-01-1566
In recent years, driving simulators have become a valuable tool in the automotive design and testing process. Yet, in the field of vehicle dynamics, most decisions are still based on test drives in real cars. One reason for this situation can be found in the fact that many driving simulators do not allow the driver to evaluate the handling qualities of a simulated vehicle. In a driving simulator, the motion cueing algorithm tries to represent the vehicle motion within the constrained motion envelope of the motion platform. By nature, this process leads to so called false cues where the motion of the platform is not in phase or moving in a different direction with respect to the vehicle motion. In a driving simulator with classical filter-based motion cueing, false cues make it considerably more difficult for the driver to rate vehicle dynamics.
Journal Article

Investigation of Aerodynamic Drag in Turbulent Flow Conditions

2016-04-05
2016-01-1605
In this paper the influence of different turbulent flow conditions on the aerodynamic drag of a quarter scale model with notchback and estate back rear ends is investigated. FKFS swing® (Side Wind Generator) is used to generate a turbulent flow field in the test section of the IVK model scale wind tunnel. In order to investigate the increase in drag with increasing yaw, a steady state yaw sweep is performed for both vehicle models. The shape of the drag curves vary for each vehicle model. The notchback model shows a more pronounced drag minimum at 0° yaw angle and experiences a more severe increase in drag at increasing yaw when compared to the estate back model. Unsteady time averaged aerodynamic drag values are obtained at two flow situations with different turbulent length scales, turbulence intensities, and yaw angle amplitudes. While the first one is representing light wind, the second one is recreating the presence of strong gusty wind.
Technical Paper

The New Interchangeable Three-belt System in the IVK Full-Scale Wind Tunnel of University of Stuttgart: Design and First Results

2016-04-05
2016-01-1581
With its recent wind tunnel upgrade, FKFS installed the first interchangeable three-belt / five-belt-system (FKFS first®) in a full scale automotive wind tunnel. With the five-belt system, which today is a state-of-the-art ground simulation technique, the system is ideally suited for production vehicle development work. The five-belt system offers high flexibility, quick access to the underfloor and vehicle fixation, and setting the vehicle’s ride height by the restraint device. The first results of the five-belt system have already been published in SAE 2015-01-1557 [1]. The three-belt system on the other hand, offers a much more sophisticated ground simulation technique which is necessary especially for sports and racing cars. For such vehicles with very low ground clearances, it is important to have a more accurate ground simulation, in order to capture the same aerodynamic modes of action and response as on the road.
Journal Article

New FKFS Technology at the Full-Scale Aeroacoustic Wind Tunnel of University of Stuttgart

2015-04-14
2015-01-1557
For many years FKFS has operated the full-scale aeroacoustic wind tunnel of University of Stuttgart. To keep this wind tunnel as one of the most modern ones of its kind, it has again been upgraded significantly. The upgrade improved the aerodynamic as well as the aeroacoustic performance and accelerated the operational processes. Additionally, new innovative features have significantly enlarged the test capabilities. A new patented, modular belt system (FKFS first®) allows high performance measurements for race cars in a 3-belt mode as well as efficient measurements for production vehicle development in a 5-belt mode. The belt system is accompanied by a new, larger turntable and a new under-floor balance which enables high-accuracy measurements of forces and moments also for a high resolution in time. For the elimination of parasitic forces generated at the wheel drive units, a specific correction procedure has been implemented, which is patented, too (FKFS pace®).
Technical Paper

Model Scale Based Process for the Development of Aerodynamic Tire Characteristics

2014-04-01
2014-01-0585
The geometric shape of the tires can have a large influence on the aerodynamic drag of a passenger car as it has been shown already in different publications like for example [1, 2, 3]. However, to optimize the shape of a tire, nowadays quite some effort is needed in terms of wind tunnel time and costs for prototype tires. In this paper an approach to optimize the tire's shape in model scale is described, which can help to reduce both development time and costs. The first step in the development of this method was to verify that the aerodynamic effects of the tire geometry in model scale are comparable to full scale tests. This was achieved by measuring different production tires in full scale and also by measuring the quarter scale version of the same tires. The only difference between the original and the model scale tires was that the scaled tires were not deformable. The results show that the difference between two sets of tires is comparable in full scale and in quarter scale.
Technical Paper

Numerical Simulation of the Transient Heat-Up of a Passenger Vehicle during a Trailer Towing Uphill Drive

2013-04-08
2013-01-0873
In the digital prototype development process of a new Mercedes-Benz, thermal protection is an important task that has to be fulfilled. In the early stages of development, numerical methods are used to detect thermal hotspots in order to protect temperature sensitive parts. These methods involve transient full Vehicle Thermal Management (VTM) simulations to predict dynamic vehicle heat-up during critical load cases. In order to simulate thermal control mechanisms, a coupled 1D to 3D thermal vehicle model is built in which the coolant and oil circuit of the engine, as well as the exhaust flow are captured in detail. When performing a transient 3D VTM analysis, the conduction and radiation phenomena are simulated using a transient structure model while the convective phenomena are co-simulated in a steady state fluid model. Both models are brought to interaction at predetermined points by an automatized coupling method.
Journal Article

Numerical Comparison of Rolling Road Systems

2011-06-09
2011-37-0017
The entire automotive industry is moving towards lower CO₂ emissions and higher energy efficiency. Especially for higher driving speeds this can be achieved by minimizing aerodynamic drag. Additionally, aerodynamic downforce is essential to maintain or even improve the handling performance of a vehicle. In order to optimize the vehicle's aerodynamic efficiency in wind tunnel tests, the boundary conditions of a vehicle driving on a road must be simulated properly. Particularly for optimizing the underbody region of a vehicle, ground simulation is an important issue in every wind tunnel. Today rolling road systems featuring one or more moving belts on the wind tunnel floor are a standard tool to simulate the complex boundary condition of a vehicle driving on the road. But generally the technical effort to measure aerodynamic forces accurately increases with improvement of the aerodynamic ground simulation.
Journal Article

Unsteady Aerodynamic Properties of a Vehicle Model and their Effect on Driver and Vehicle under Side Wind Conditions

2011-04-12
2011-01-0154
In this paper the effect of aerodynamic modifications that influence the unsteady aerodynamic properties of a vehicle on the response of the closed loop system driver-vehicle under side wind conditions is investigated. In today's aerodynamic optimization the side wind sensitivity of a vehicle is determined from steady state values measured in the wind tunnel. There, the vehicle is rotated with respect to the wind tunnel flow to create an angle of attack. In this approach however, the gustiness that is inherent in natural wind is not reproduced. Further, unsteady forces and moments acting on the vehicle are not measured due to the limited dynamic response of the commonly used wind tunnel balances. Therefore, a new method is introduced, overcoming the shortcomings of the current steady state approach. The method consists of the reproduction of the properties of natural stochastic crosswind that are essential for the determination of the side wind sensitivity of a vehicle.
Technical Paper

CFD Approach to Evaluate Wind-Tunnel and Model Setup Effects on Aerodynamic Drag and Lift for Detailed Vehicles

2010-04-12
2010-01-0760
Previous work by the authors showed the development of an aerodynamic CFD model using the Lattice Boltzmann Method for simulating vehicles inside the IVK Model-Scale Wind-Tunnel test-section. In both experiment and simulation, alternate configurations of the wind-tunnel geometry were studied to change the pressure distribution in the wind-tunnel test section, inducing a reduction in aerodynamic drag due to interference between the wind-tunnel geometry and the pressure on the surface of the vehicle. The wind-tunnel pressure distribution was modified by adding so-called “stagnation bodies” inside the collector to create blockage and to increase the pressure in the rear portion of the test section. The primary purpose of previous work was to provide a validated CFD approach for modeling wind-tunnel interference effects, so that these effects can be understood and accounted for when designing vehicles.
Journal Article

The Effect of High Turbulence Intensities on Surface Pressure Fluctuations and Wake Structures of a Vehicle Model

2009-04-20
2009-01-0001
The unsteady environment road vehicles are exposed to is subject of many investigations that are currently made. Yet, the approaching flow is only one aspect of unsteady forces acting on the vehicle. Unsteady wake structures also lead to time-varying surface pressures and consequently fluctuating forces even in steady and low turbulent flows. However, little is known about the influence of realistic flow conditions, i.e. as found on road, on the unsteady surface pressures and wake structures of a vehicle. Therefore, to derive a deeper understanding of the unsteady aerodynamic properties of a vehicle this paper presents results of measurements conducted on a vehicle body both in smooth and turbulent flow conditions in the IVK model scale wind tunnel. Unsteady surface pressure measurements in the area where separation occurs and the base of the vehicle were made together with time accurate total pressure measurements in the wake.
Technical Paper

Investigations in a Cooling Air Flow System under the Influence of Road Simulation

2008-04-14
2008-01-0796
This paper presents some recent results concerning the generation and minimization of cooling air drag, achieved in an integrated approach of numerical and experimental investigations. The baseline configuration of a production cars' cooling air flow system is analyzed. The analysis of the created drag shows, that most of the force changes due to the cooling air flow appear in the front region of the vehicle. However, the forces generated by heat exchangers are only a small share of the total changes. Additional drag is generated for example by the front wheels and by the components of the underhood compartment. The investigation of the influence of the vehicle rear end shape on the aerodynamics of the cooling air flow system shows, that two similar cars with different rear end shapes (notchback and squareback) can feature different cooling air drag values.
Technical Paper

The Influence of Rotating Wheels on Total Road Load

2007-04-16
2007-01-1047
Within in the scope of a road load investigation project at FKFS, the influence of rotating wheels on the road load of a passenger car was investigated. For this purpose an approach was developed to measure the ventilation resistance of a spinning wheel. This approach enables a comparison of different wheel sizes and rim designs. Together with aerodynamic drag measurements in the wind tunnel it is possible to evaluate different wheel configurations with respect to their contribution to the road load. The measuring approach and results of performed measurements are shown in this paper.
X