Refine Your Search

Search Results

Viewing 1 to 15 of 15
Journal Article

Application of Stochastic Model Predictive Control to Modeling Driver Steering Skills

2016-04-05
2016-01-0462
With the development of the advanced driver assistance system and autonomous vehicle techniques, a precise description of the driver’s steering behavior with mathematical models has attracted a great attention. However, the driver’s steering maneuver demonstrates the stochastic characteristic due to a series of complex and uncertain factors, such as the weather, road, and driver’s physiological and psychological limits, generating negative effects on the performance of the vehicle or the driver assistance system. Hence, this paper explores the stochastic characteristic of driver’s steering behavior and a novel steering controller considering this stochastic characteristic is proposed based on stochastic model predictive control (SMPC). Firstly, a search algorithm is derived to describe the driver’s road preview behavior.
Technical Paper

Research on Tire Lateral Force Prediction under High-Load Condition

2015-04-14
2015-01-1524
The tire lateral force is essential to the vehicle handling and stability under cornering. However, it is difficult for engineers to get the tire lateral force under high loading condition due to the limitation of loading ability for most tire test machine in the world. The widely used semi-empirical tire lateral force models are obtained by curve-fitting experiments data and thus unable to predict the load dependent lateral force. The objective of this paper is to predict the tire lateral force under high-load condition based on the low-load tire data. The nonlinear characteristics of the tire cornering stiffness with the load are greatly affected by the tire carcass compliance. In this paper, a theoretical tire lateral model was built by considering carcass complex deformation. Combined with the relationship between the half-length of the tire contact patch and the load, the non-linear characteristics of the tire cornering stiffness with load were obtained.
Technical Paper

A New Predictive Deadbeat Current Control Strategy for Hub Motor Based on State-observer

2014-10-13
2014-01-2902
In this paper, the predictive control strategy is employed to improve the current tracking performance of hub motor in 4WD electric vehicle due to its fast dynamic response. But the performance of the conventional predictive deadbeat current control suffers greatly from the parameter variations and other disturbances. Toward this, this paper presents a new predictive control strategy for hub motor; this control scheme combines an improved predictive control law with a state-observer to estimate the future motor currents and system disturbances based on a decoupled model. It provides a decoupled control of hub motor and offers stability against the variations in motor inductance and robustness against system uncertainties. The feasibility and validity of the proposed predictive current control strategy is verified through the simulation results.
Technical Paper

Stability Control of Four-Wheel-Drive Electric Vehicle with Electro-Hydraulic Braking System

2014-09-28
2014-01-2539
Four-wheel-drive electric vehicles (4WD Evs) utilize in-wheel electric motors and Electro-Hydraulic Braking system (EHB). Then, all wheels torque can be controlled independently, and the braking pressure can be controlled more accurately and more fast than conventional braking system. Because of these advantages, 4WD Evs have potential applications in control engineering. In this paper, the in-wheel electric motors and EHB are applied as actuators in the vehicle stability control system. Based on the Direct Yaw-moment Control (DYC), the optimized wheel force distribution is given, and the coordination control of the hydraulic braking and the motor braking torque is considered. Then the EHB hardware-in-the-loop test bench is established in order to verify the effectiveness of the vehicle stability control algorithm through experiments.
Technical Paper

Experimental Research on the Pressure Following Control of Electro-Hydraulic Braking System

2014-04-01
2014-01-0848
Pressure following control is the basic function of Electro-Hydraulic Braking system (EHB), which is also the key technology of stability control system and regenerative braking system for hybrid and electric vehicles. Experimental research is an important method for the control and application of EHB. This paper describes a method to test and control the EHB system through experiment on the Hardware-in-the-loop (HIL) test bench and wheel motor electric vehicle. First, the HIL test bench was established, in which the EHB was tested, including the characteristics of solenoid valves and motor. Then the wheel cylinder pressure was controlled to follow the specific signal input and the master cylinder pressure. Based on this, EHB and the pressure following control method were applied to the wheel motor electric vehicle. The results show that the braking pressure can follow the driver's braking intention to realize the conventional braking function of electric vehicles.
Technical Paper

Tire Carcass Camber and its Application for Overturning Moment Modeling

2013-04-08
2013-01-0746
The properties of contact patch are key factors for tire modeling. Researchers have paid more attention to the contact patch shape and vertical pressure distribution. Some innovative concepts, such as Local Carcass Camber, have been presented to explain special tire modeling phenomena. For a pragmatic tire model, a concise model structure and fewer parameters are considered as the primary tasks for the modeling. Many empirical tire models, such as the well-known Magic Formula model, would become more complex to achieve satisfactory modeling accuracy, due to increasing number of input variables, so the semi-empirical or semi-physical modeling method becomes more attractive. In this paper, the concept of Tire Carcass Camber is introduced first. Different from Local Carcass Camber, Tire Carcass Camber is an imaginary camber angle caused only by lateral force on the unloaded tire.
Technical Paper

Analysis of Non-Steady State Tire Cornering Properties Based on String-Concept Deformation and Geometric Relationship of Contact Patch

2007-04-16
2007-01-1514
Vehicle handling and stability performances are greatly determined by non-steady state (NSS) tire cornering properties. Analytical derivation of NSS tire cornering models are presented in this paper based on Pacejka's string-concept assumption, in which carcass is assumed to be a stretched string with lateral deformation and lateral relaxation. The lateral inputs of the models are either displacement-based (lateral displacement and yaw angle) or slip-based (slip angle and turn slip). The transient deformations in spatial domain in both longitudinal and lateral directions are obtained directly from geometric relationship of contact patch. The additional self-aligning moment due to longitudinal deformation of contact patch after effect of tire width is considered is also achieved according to geometric relationship of contact patch in longitudinal direction and two transient geometric conditions of contact point.
Technical Paper

An Empirical Tire Model for Non-Steady State Side Slip Properties

2003-11-10
2003-01-3414
In this paper, on the basis of the extant semi-empirical tire models of non-steady state with pure yaw angle input and pure side slip angle input, two empirical tire models of non-steady state side slip properties are established, one is pure yaw angle input, the other is pure side slip angle input, and both of them have been verified by test data. These two models can be used to approximately express tire force within low frequency. They have their own advantages, and make up for the disadvantages of existing tire models. They provide more choice for the simulation of vehicle dynamics.
Technical Paper

Key Items in Tire Non-Steady State Test

2002-07-09
2002-01-2231
In the paper, the Flat Plank Tire Tester of Changchun Automobile Institute is introduced. This paper, according to practical experiences, generalizes some issues in the tire's non-steady state test. In the non-steady state test, it must be assured that the footprint centerline of tire coincides with that of slid platform, which guarantees no sliding motion between tire and slid platform during the movement. Due to tire taper effect and inhomogeneous tire material, when its side slip angle is zero, side force and aligning torque are not zeros, but have initial values. Here two approaches are discussed to eliminate the side force and aligning torque. Besides, other factors in the test are put forward for discussion. Eliminating the interference can obviously improve the test accuracy. This paper also provides test curves of both pure side slip angle input and pure yaw angle input.
Technical Paper

A Study of Tire Lag Property

2001-03-05
2001-01-0751
Tire lag property is a basic property of tire dynamics, and it has significant influence on the performance of vehicle dynamics. In distance domain, the side force and moments produced by a massless tire are basically displacement or path frequency dependent, rather than time dependent. In the paper, on the basis of the stretched-string model, the first-order filtering of deflection for the front point of the contact print and the first-order filtering of side force have been introduced. Tire system can be regarded as a first-order linear system under small slip angle. The force response of tire has the characteristics of the responses of first-order linear system under small angle. The relaxation length is an important parameter in studying tire lag property. It decreases with increasing slip angle. It plays an important role in the study of tire transient properties.
Technical Paper

A Driver Direction Control Model and its Application in the Simulation of Driver-Vehicle-Road Closed-Loop System

2000-06-06
2000-01-2184
The research of driver behavior characteristics has been a focus of vehicle handling and stability performance. With the driver preview effort, many different driver preview models of direction control have been proposed and the simulations of driver-vehicle-road closed-loop system made. But in the simulation, most of the conventional models have the same precondition that the road was simply described as a pre-given preview course. How to simulate the driver dynamically deciding vehicle preview course based on the real road circumstance is the key to the further research of the driver model. In this paper, a new driver direction control model is established, which is called the Optimal Preview Lateral Acceleration (OPLA) Model and divided into three sub-models: driver’s information identification model, driver’s fuzzy decision model of vehicle preview course and driver’s performance first-order correction model.
Technical Paper

Research on Closed-Loop Comprehensive Evaluation Method of Vehicle Handling and Stability

2000-03-06
2000-01-0694
A closed-loop comprehensive evaluation and a test method for vehicle handling and stability have been studied by using development driving simulator. Simulator test scheme has been designed and carried out with 14 vehicle configurations, and subjective evaluation has been made for easy handling of vehicle by drivers. A closed-loop comprehensive evaluation index has been put forward considering the factors affecting vehicle handling and stability. The reliability of the index has been validated by driver's subjective evaluation. A driver/vehicle/ road closed-loop system model has been established, and the theoretical predictive evaluation has been carried out with 14 vehicle configurations. Simulation showed that similar result for both theoretical predictive evaluation and subjective evaluation.
Technical Paper

Influences of Non-Steady State Tire Cornering Properties on Automobile Shimmy

1999-11-15
1999-01-3757
One of the most essential factors causing automobile and aircraft shimmy is energy import from road to tires due to tire hysteresis characteristic. The magnitudes and direction of the energy import are close to frequency responses of tire cornering properties (TCP), which can be calculated directly according to the presented non-steady state TCP theoretical model. Selfexcited shimmy is the main type of wheel shimmy and behaves as negative equivalent damping characteristic of the tire-road vibration subsystem. The values of energy import or equivalent damping determine the tendency of wheel shimmy. Tire structural parameters have certain effects on frequency response of TCP and thereby result in influences on wheel shimmy. Based on the tire model, some valid ways to decrease shimmy tendency are concluded through proper variations of carcass stiffness, tire-width, kingpin caster, tire pneumatic trail, tire cornering stiffness and so on.
Technical Paper

Analysis of Automotive Handling Based on Tire Cornering Properties in Non-Steady State Conditions

1999-11-15
1999-01-3758
Non-steady state (NSS) tire cornering properties show obvious differences from steady state (SS) tire cornering properties. A two-DOF automobile model with steer angle as an input is established based on the known NSS tire model considering complex carcass deformation. The tire model can certainly be applied to modelling of a multi-DOF automobile system. The frequency responses of lateral acceleration and yaw rate are then derived. An evaluation index, amplitude-frequency characteristic of relative error (AFCRE), is used to analyze the influences of NSS front wheels (FW) and/or rear wheels (RW) on automotive handling. The influences of NSS FW are much greater than those of NSS RW only on automotive handling. The established automobile model can also be applied to other similar studies of vehicle dynamics.
Technical Paper

Tire Roller Contact Model for Simulation of Vehicle Vibration Input

1993-11-01
932008
To improve the quantitative accuracy of vehicle vibration studies, a roller contact tire model with the geometric filtering concept and a method to determine the effective road input are proposed. Computer simulation with the 13 DOF vehicle model for a light truck, based on two different tire models, and relevant outdoor tests for measuring the vehicle accelerations of both sprung and unsprung masses are presented. Comparisons of test data and simulation results show that the roller contact tire model renders much better simulation accuracy than the single point contact tire model. It is concluded that the roller contact tire model is a powerful concept which acts as a geometric filter, giving a simple method to calculate the enveloping effects of tires and the effective road elevation input.
X