Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Experimental Acoustic Analysis of a Motorcycle Dissipative Muffler in Presence of Mean Flow

2016-11-08
2016-32-0039
In recent years, the motorcycle muffler design is moving to dissipative silencer architectures. Due to the increased of restrictions on noise emissions, both dissipative and coupled reactive-dissipative mufflers have substituted the most widely used reactive silencers. This led to higher noise efficiency of the muffler and size reduction. A dissipative muffler is composed by a perforated pipe that crosses a cavity volume filled by a fibrous porous material. The acoustic performance of this kind of muffler are strictly dependent on the porosity of the perforated pipe and the flow resistivity characteristic of the porous material. However, while the acoustic performance of a reactive muffler is almost independent from the presence of a mean flow for typical Mach numbers of exhaust gases, in a dissipative muffler the acoustic behaviour is strictly linked to the mass flow rate intensity.
Journal Article

Experimental Acoustic Characterization of Double-Inlet and Single-Outlet Muffler

2015-06-15
2015-01-2315
The acoustic performance of mufflers with single-inlet and single-outlet are well described using Insertion Loss (IL) and Transmission Loss (TL). These parameters represent the acoustic damping on the engine emission and on the incident pressure wave respectively. However, for mufflers with multi-inlet these parameters depend also on the sources characteristics, as consequence their use is quite difficult. In the present work the acoustic performance of a double-inlet and single-outlet muffler are experimentally evaluated in terms of reflection and transmission coefficients of each port of the muffler itself. These coefficients are used to evaluate the Insertion Loss of the manifold muffler taking into account specific sources on the inlets. The characteristic coefficients are also used to predict the acoustic emission of the manifold muffler using a known engine source on the two inlets.
Journal Article

Assessment and Experimental Validation of a 3D Acoustic Model of a Motorcycle Muffler

2014-11-11
2014-32-0122
The intake and exhaust lines provide the main abatement of the acoustic emissions of an Internal Combustion Engine (ICE). Many different numerical approaches can be used to evaluate the acoustic attenuation, which is commonly expressed by the Transmission Loss. One-dimensional (1D) and three-dimensional (3D) simulations are conventionally carried out only considering the acoustic domain of the muffler or of the air-box. The walls of the acoustic filter are considered fully rigid and the interaction between the acoustic waves and the structure is consequently negligible. Moreover, the effect of the manufacturing characteristics and the attenuation of the acoustic waves due to the fluid viscous-thermal effects are also commonly disregarded in the numerical analysis of the filters. In addition, the presence of a catalytic converter or a filter cartridge may have an influence on the numerical results.
Technical Paper

Acoustic Characterization of Automotive Mufflers - Part I: Test Rig Design and Evaluation of Acoustic Properties

2012-04-16
2012-01-0800
In current automotive research, increasing attention is being paid to the design of mufflers due to the lower noise levels which have been established by the acoustic international standards. The traditional design approaches are no longer sufficient to meet the standards and more refined techniques are necessary. Within this context, a specific test rig was built at the Energy Engineering Department of the University of Florence to analyze the acoustic characteristics of both industrial mufflers and simplified models. In particular, the latter is commonly used to investigate in detail the physical phenomena connected to the acoustic response of these disposals and to calibrate numerical models. The test rig operates at ambient condition with no flow.
Technical Paper

Acoustic Characterization of Automotive Mufflers - Part II: Validation of the Numerical Models by Means of Experimental Data

2012-04-16
2012-01-0801
Increasing interest is being paid to noise pollution of internal combustion engines and as a result, recent international standards imposed more severe limitations to acoustic emissions on engine manufacturers. In particular, the noise coming from gas-dynamic interactions has an important influence in determining the final noise level of the engine; as a consequence, the muffler design is currently being considered as one of the most important research threads for engine companies. Within this context, the 1D approach to numerical simulations, which has been successfully applied by industrial designers to the fluid-dynamic design of the engine, is considered to be inaccurate in the evaluation of the acoustic behavior of the muffler for medium-high frequencies. On the other hand, an extension of the applicability of these codes in the medium-high frequencies would be desirable.
X