Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

On the Stability of the EPA MPG Adjustment Factors

1985-06-01
851216
The offset (sometimes called “shortfall”) between EPA MPG and actual in-use MPG has been shown to be dependent upon vehicle technology and EPA MPG level. If these variables change significantly, there is the potential for the constant EPA MPG adjustment factors (0.90 city, 0.78 highway) to become obsolete. Trends in passenger car MPG have been used to formulate a model of vehicle technology mixes and MPG levels over the next 15 years, to investigate the degree to which MPG adjustments derived from such a scenario might differ from the promulgated constant adjustment factors. As a check on the reasonableness of the future technology scenario, a simple econometric model was constructed independently which relates car class market fractions and MPG levels to gasoline price, and to regulatory requirements: MPG Standards and the Gas Guzzler tax.
Technical Paper

Development of Adjustment Factors for the EPA City and Highway MPG Values

1984-02-01
840496
This paper describes the development of adjustment factors applicable to the EPA City and Highway MPG values. The paper discusses the data bases used, and the analytical methods employed to arrive at adjustment factors of 0.90 for the EPA City MPG value and 0.78 for the EPA Highway MPG value.
Technical Paper

Passenger Car Fuel Economy During Non-Urban Driving

1974-02-01
740592
The use of fuel economy data from the Federal Test Procedure (FTP) has provided a substantial amount of data on the fuel economy of passenger cars in urban driving conditions. Since the FTP does not represent the type of driving done in rural areas, especially on highways, a driving cycle to assess highway fuel economy was a desirable supplement to the FTP. The new Environmental Protection Agency (EPA) “highway” cycle was constructed from actual speed-versus-time traces generated by an instrumented test car driven over a variety of nonurban roads and highways. This cycle reflects the correct proportion of operation on each of the four major types of nonurban roads and preserves the non-steady-state characteristics of real-world driving. The average speed of the cycle is 48.2 mph and the cycle length is 10.2 miles, close to the average nonurban trip length.
X