Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Friction on Polished vs. Newly Re-Rocked Oil-and-Chip Roadway Surfaces

2016-04-05
2016-01-1568
Roadway tractive capabilities are an important factor in accident reconstruction. In the absence of full-scale experiments, tire/road coefficient of friction values are sometimes quoted from reference textbooks. For the various types of road construction, the values are given only in the form of a wide range. One common roadway type is oil-and-chip construction. We examine stopping distances for newly-rocked oil-and-chip roads vs. similarly constructed roads that have been traffic-polished. The examination was conducted through full-scale braking experiments with instrumented vehicles. Results show that the differences between newly-rocked oil-and-chip roads when compared to roads that are traffic-polished are on the same order as vehicle, tire and ABS algorithm differences, and that full-scale testing is required for accurate μ-values.
Technical Paper

Road Bicycle Dynamics in the Presence of Idealized Roadway Irregularities

2010-04-12
2010-01-0053
Bicycle accidents may occur in the presence of roadway asperities, discontinuities and other pavement failure modes and conditions. We examine the dynamics of ramp-climbing and potential pitchover by the rider when idealized asperities are encountered from a theoretical point of view, and derive an expression for the speed at which pitchover will occur if and when a sudden stop occurs. A series of experiments was carried out in which road bicycle behavior was examined for idealized roadway asperities of known size and configuration. Finally, a series of braking experiments was performed to determine the emergency stopping potential of a road bicycle.
Technical Paper

Controlled Braking Experiments with and without ABS

2010-04-12
2010-01-0100
An experimental program to measure braking characteristics developed under emergency braking conditions by ABS-equipped vehicles was designed and performed. Variables examined included initial braking speed, vehicle type, tire pressure and data recording equipment utilized. All experiments were conducted on a closed airport taxiway constructed of sharp, brushed and heavily striated concrete. Tests were conducted with and without activated ABS systems on the test vehicles. Results showed that (1) with the ABS activated, faint roadway markings were visible only under a very few special circumstances, (2) tire/road μ-values and corresponding deceleration values varied only slightly for differing speeds and ABS conditions, (3) tire pressure made little difference in limited test results, and (4) there were differences in recorded results depending on the equipment used for data acquisition.
Technical Paper

Oversteer/Understeer Characteristics of a Locked Differential

1994-12-01
942485
The type of differential used in a vehicle has an important and often-neglected effect on handling performance. This is particularly important in racing applications, such as in IndyCar racing, in which the type of differential chosen depends on the course being raced (superspeedway ovals, short ovals, temporary street courses and permanent road courses). In the present work, we examine the effect of a locked rear differential on oversteer/understeer behavior. Using a linear tire model, it is shown that employing a locked differential adds a constant understeer offset to the steering wheel angle (SWA) -v- lateral acceleration vehicle signature. A computer simulation of steady-state cornering behavior showed that the actual effect is much more complicated, and is strongly influenced by static weight distribution, front/rear roll couple distribution, available traction and the radius of the turn being negotiated.
Technical Paper

Dynamics of Four-Wheel-Steer Off-Highway Vehicles

1993-03-01
930765
Off road vehicle dynamics present fundamental differences to the engineer than those of highway vehicles. In this work, we examine off-road dynamics for a class of industrial vehicles: front-end loaders. After a review of terramechanics and off-road tire behavior, equations of motion for a front-end loader are developed. Kinematic steering relationships, steady-state performance and understeer and oversteer characteristics are also derived. Off-road front-end loader characteristics and performance in terms of vehicle handling, overturn behavior and obstacle avoidance are presented, and some design characteristics and parameter values for a typical vehicle are given to aid the designer in analysis and synthesis.
X