Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Developing an Automated Vehicle Research Platform by Integrating Autoware with the DataSpeed Drive-By-Wire System

2024-04-09
2024-01-1981
Over the past decade, significant progress has been made in developing algorithms and improving hardware for automated driving. However, conducting research and deploying advanced algorithms on automated vehicles for testing and validation remains costly, especially for academia. This paper presents the efforts of our research team to integrate the newest version of the open-source Autoware software with the commercially available DataSpeed Drive-by-Wire (DBW) system, resulting in the creation of a versatile and robust automated vehicle research platform. Autoware, an open-source software stack based on the 2nd generation Robot Operating System (ROS2), has gained prominence in the automated vehicle research community for its comprehensive suite of perception, planning, and control modules. The DataSpeed DBW system directly communicates with the vehicle's CAN bus and provides precise vehicle control capabilities.
Technical Paper

A Survey of Vehicle Dynamics Models for Autonomous Driving

2024-04-09
2024-01-2325
Autonomous driving technology is more and more important nowadays, it has been changing the living style of our society. As for autonomous driving planning and control, vehicle dynamics has strong nonlinearity and uncertainty, so vehicle dynamics and control is one of the most challenging parts. At present, many kinds of specific vehicle dynamics models have been proposed, this review attempts to give an overview of the state of the art of vehicle dynamics models for autonomous driving. Firstly, this review starts from the simple geometric model, vehicle kinematics model, dynamic bicycle model, double-track vehicle model and multi degree of freedom (DOF) dynamics model, and discusses the specific use of these classical models for autonomous driving state estimation, trajectory prediction, motion planning, motion control and so on.
Technical Paper

An Improved AEB Control System Based on Risk Factors with Consideration of Vehicle Stability

2024-04-09
2024-01-2331
Intelligent vehicle-to-everything connectivity is an important development trend in the automotive industry. Among various active safety systems, Autonomous Emergency Braking (AEB) has garnered widespread attention due to its outstanding performance in reducing traffic accidents. AEB effectively avoids or mitigates vehicle collisions through automatic braking, making it a crucial technology in autonomous driving. However, the majority of current AEB safety models exhibit limitations in braking modes and fail to fully consider the overall vehicle stability during braking. To address these issues, this paper proposes an improved AEB control system based on a risk factor (AERF). The upper-level controller introduces the risk factor (RF) and proposes a multi-stage warning/braking control strategy based on preceding vehicle dynamic characteristics, while also calculating the desired acceleration.
Technical Paper

Energy Dissipation Characteristics Analysis of Automotive Vibration PID Control Based on Adaptive Differential Evolution Algorithm

2024-04-09
2024-01-2287
To address the issue of PID control for automotive vibration, this paper supplements and develops the evaluation of automotive vibration characteristics, and proposes a vibration response quantity for evaluating the energy dissipation characteristics of automotive vibration. A two-degree-of-freedom single wheel model for automotive vibration control is established, and the conventional vibration response variables for ride comfort evaluation and the energy consumption vibration response variables for energy dissipation characteristics evaluation are determined. This paper uses the Adaptive Differential Evolution (ADE) algorithm to tune the PID control parameters and introduces an adaptive mutation factor to improve the algorithm's adaptability. Several commonly used adaptive mutation factors are summarized in this paper, and their effects on algorithm improvement are compared.
Technical Paper

An advanced tire modeling methodology considering road roughness for chassis control system development

2024-04-09
2024-01-2317
As the automotive industry accelerates its virtual engineering capabilities, there is a growing requirement for increased accuracy across a broad range of vehicle simulations. Regarding control system development, utilizing vehicle simulations to conduct ‘pre-tuning’ activities can significantly reduce time and costs. However, achieving an accurate prediction of, e.g., stopping distance, requires accurate tire modeling. The Magic Formula tire model is often used to effectively model the tire response within vehicle dynamics simulations. However, such models often: i) represent the tire driving on sandpaper; and ii) do not accurately capture the transient response over a wide slip range. In this paper, a novel methodology is developed using the MF-Tyre/MF-Swift tire model to enhance the accuracy of ABS braking simulations.
Technical Paper

Development of a Dual Motor Beam eAxle for Medium Duty Commercial Vehicle Application

2024-04-09
2024-01-2162
Considering the current trend towards the electrification of commercial vehicles, the development of Beam eAxle solutions has become necessary. The utilization of an electric drive unit in heavy-duty solid axle-based commercial vehicles presents unique and demanding challenges. These include the necessity for elevated peak and continuous torque while meeting packaging constraints, structural integrity requirements, and extended service life. One such solution was developed by BorgWarner to address these challenges. This paper offers a comprehensive overview of the design and development process undertaken for this Dual Motor Beam eAxle system. This includes the initial comparison of various eAxle solutions, the specifications of components selected for this design, and the initial results from dyno and vehicle development.
Technical Paper

Advanced Development of e-HMI Road Content Projection Headlamp

2024-04-09
2024-01-2232
Recently, with the advancement of autonomous driving technology, the function of external lamps has been changed. Previously, the focus was on the visibility of drivers, but with the advancement of autonomous driving technology, the concept of autonomous driving systems has been developed. Accordingly, the trend of automotive lamp lighting systems has been developed in terms of design, e-HMI (exterior-human machine interface), It is developing in accordance with three major fields such as sensor connection. Therefore, this paper will cover the prior development of road content projection headlamps that enable e-HMI implementation to reflect these new trends. Since the technology is mass-produced and sold by several manufacturers, our company also needs to quickly develop and apply the technology in advance. Only four types of symbols are allowed in European law.
Technical Paper

Performance of Headlights Fitted with LED Replacement Bulbs

2024-04-09
2024-01-2230
To ensure adequate visibility without excessive glare, vehicle headlights are designed to use a specific source of illumination. The optical designs of headlights gather the luminous flux produced by the light source to produce a useful beam pattern that meets the relevant requirements and standards for vehicle forward lighting. With the advent of solid state, light emitting diode sources for general illumination, an increasing number of LED replacement headlight bulb products has emerged over the past decade. In most cases, these LED replacement bulbs are not permitted for legal use on public roadways, but some countries have begun to permit specific LED replacement bulbs to be used legally on the road for specific makes, models and production years of certain vehicles. If they can be demonstrated to produce a beam pattern that meets the photometric requirements for a legal headlight, they are permitted to be used legally for on-road use.
Technical Paper

Polymeric Compounds with Cellulose Nanofibrils for 3D Printing Applications

2024-04-09
2024-01-2576
A systematic review based on the PRISMA protocol was used to evaluate compounds developed for 3D printing with the incorporation of cellulose nanofibrils into polymers to be used in the automotive sector. The processing parameter is a data of great relevance for the development of durable structural parts and this study can be carried out using the state of the art on this subject. This way, the research was carried out using a search strategy from three different databases (Web of Science, Scopus and Science Direct) limiting studies between the years 2019 and 2023. The keywords used in these searches were: "3D Print" OR "FDM" OR "Fused Deposition Modeling" OR "FFF" OR "Fused Filament Fabrication" AND "Natural Nanofiber" OR "Natural Nanofibril" OR "Cellulose Nanofiber" OR "Cellulose Nanofibril". The same criteria described were also used to search for patents on the PatentScope, Google Patents and Espacenet platforms.
Technical Paper

Experimental and Numerical Momentum Flux Analysis of Jets from a Hydrogen Injector

2024-04-09
2024-01-2616
The use of hydrogen in internal combustion engines is an effective approach to significantly support the reduction of CO2 emissions from the transportation sector using technically affordable solutions. The use of direct injection is the most promising approach to fully exploit hydrogen potential as a clean fuel, while preserving targets in terms of power density and emissions. In this frame, the development of an effective combustion system largely relies on the hydrogen-air mixture formation process, so to adequately control the charge stratification to mitigate pre-ignitions and knock and to minimize NOx formation. Hence, improving capabilities of designing a correct gas jet-air interaction is of paramount importance. In this paper the analysis of the evolution of a high-pressure gas jet produced by a single-hole prototype injector operated with different pressure ratios is presented.
Technical Paper

Applying Concolic Testing to the Automotive Domain

2024-04-09
2024-01-2802
Symbolic code execution is a powerful cybersecurity testing approach that facilitates the systematic exploration of all paths within a program to uncover previously unknown cybersecurity vulnerabilities. This is achieved through a Satisfiability Modulo Theory (SMT) solver, which operates on symbolic values for program inputs instead of using their concrete counterparts. However, in complex code bases, this approach faces significant limitations, such as program path explosions or unavailable dependencies, which can result in conditions that the SMT solver cannot reason about. Consequently, SMT solvers are often considered as too costly to implement for automotive testing use cases and are rarely employed within this domain. In contrast, fuzz testing has recently gained traction in the automotive industry as an invaluable testing technique for identifying previously unknown vulnerabilities. Its initial setup is straightforward and typically yields useful findings.
Technical Paper

Experimental Analysis of the Influence of Damper Degradation by Loss of Oil on the Straight Braking Performance of Passenger Cars with ABS

2024-03-19
2024-01-5036
The aim of this study is to determine if the degradation of one or more dampers of a passenger car with ABS leads to a statistically significant reduction of vehicle safety. Therefore, a compact and a mid-size car are tested on a flat test track and on an uneven test track by straight braking maneuvers at different levels of damper degradation. Both test tracks are scanned using a 3D laser scanner. For every level of damper degradation (on each test track) a new set of tires is used, a preconditioning routine is applied and 30 successful measurements are conducted to allow using statistical methods to evaluate the results. The results show that any level of damper degradation with each type of car and test track leads to a significant increase in braking distance and, therefore, to a significant reduction of vehicle safety. The braking distance extension varies heavily with the level of damper degradation and the road properties.
Research Report

Textile Circularity and the Sustainability Model of New Mobility

2024-03-12
EPR2024006
The world is on a “take-make-waste,” linear-growth economic trajectory where products are bought, used, and then discarded in direct progression with little to no consideration for recycling or reuse. This unsustainable path now requires an urgent call to action for all sectors in the global society: circularity is a must to restore the health of the planet and people. However, carbon-rich textile waste could potentially become a next-generation feedstock, and the mobility sector has the capacity to mobilize ecologically minded designs, supply chains, financing mechanisms, consumer education, cross-sector activation, and more to capitalize on this “new source of carbon.” Activating textile circularity will be one of the biggest business opportunities to drive top- and bottom-line growth for the mobility industry.
Technical Paper

Robotic Drilling: A Review of Present Challenges

2024-03-05
2024-01-1921
In numerous industries such as aerospace and energy, components must perform under significant extreme environments. This imposes stringent requirements on the accuracy with which these components are manufactured and assembled. One such example is the positional tolerance of drilled holes for close clearance applications, as seen in the “EN3201:2008 Aerospace Series – Holes for metric fasteners” standard. In such applications, the drilled holes must be accurate to within ±0.1 mm. Traditionally, this required the use of Computerised Numerical Control (CNC) systems to achieve such tight tolerances. However, with the increasing popularity of robotic arms in machining applications, as well as their relatively lower cost compared to CNC systems, it becomes necessary to assess the ability of robotic arms to achieve such tolerances. This review paper discusses the sources of errors in robotic arm drilling and reviews the current techniques for improving its accuracy.
Technical Paper

A Study on the Thermal Interface Mechanisms of Natural Fiber/Fillers and Allotrope-Based Polymers

2024-02-23
2023-01-5129
Composites of polymers reinforced with synthetic/natural fibers are mainly used in engineering sectors such as automobiles, aerospace, and in household appliances due to their abrasion resistance, high toughness, strength, and high specific modulus. The purpose of this research is to provide an overview of fiber-matrix interfaces and interface mechanism that leads to enhanced properties. This article investigates how natural/synthetic fibers, mineral based-materials and additional allotropic materials work rapidly and effectively across interfaces.
Technical Paper

Numerical Modelling and Simulation of Anti-lock Braking System for Two-wheeler Electric bike using Scilab Xcos

2024-02-23
2023-01-5139
Disc brakes are the most popular type of brakes used in the two-wheeler segment and are easily available in the market. The improper brakes result in serious problems in vehicles. The main idea of this paper is to design a braking system for a two-wheeler application. The paper discusses the design, analysis, and simulation of disc brakes. The disc is first selected using the standard brake disc calculation. To verify the selection of disk, torque at wheel and torque at the disc are compared. Thermomechanical (Transient) analysis is done on ANSYS 2021 to check for the effect of braking force applied by the disc on the rotor disc. The mathematical model of the ABS model is done on Scilab Xcos. The main aim of studying the system using a mathematical model is to verify if the selected disc brakes are safe enough to be installed on a two-wheeler. The mathematical model also has stopping distance and the stopping time as the output which validates the selection of the disc.
Technical Paper

Twin Motor System for Electric Vehicle Propulsionby by Means of Energy Source

2024-01-16
2024-26-0113
The transport sector in all domains like personal vehicles, public transport and logistics has seen a tremendous growth over the past decade, more so in the last 5 years. The main reasons for this rapid growth is the development of new energy storage systems in battery technology (Lithiumion, sodium ion, aluminum air etc.), hydrogen fuel cells, super capacitors etc. On the other hand there has been tremendous development in the motor drive technology with the availability of brushless dc motors (BLDC Motors), induction motors, Permanent magnet synchronous motors (PMSM, IPMSM). Each motor having its own special characteristics and usage suited for a very specific application in terms of torque and load bearing capacities. In this paper we describe a unique platform with twin motor drive system electric vehicle which is powered by an artificial intelligence (AI) enabled electronic module DuoPackR.
Technical Paper

The Scope of Autonomous Vehicle Mobility with an Indian Context

2024-01-16
2024-26-0087
The advent of autonomous vehicles promises to revolutionize the transportation sector globally, and India, as one of the world's fastest-growing economies, stands at the forefront of this transformative technology. This paper presents a brief overview of the current state and potential implications of autonomous vehicles in the Indian context. With its densely populated cities, diverse traffic conditions, and complex road infrastructure, India presents unique challenges and opportunities for the deployment of autonomous vehicles. This technology has the potential to address critical issues such as road safety, congestion, and pollution while transforming the mobility experience for millions of people. However, several hurdles must be overcome to fully harness its benefits. The paper explores key considerations for the implementation of autonomous vehicles in India.
Technical Paper

Regulatory Trends for Enhancement of Road Safety

2024-01-16
2024-26-0165
India is one of the largest markets for the automobile sector and considering the trends of road fatalities and injuries related to road accidents, it is pertinent to continuously review the safety regulations and introduce standards which promise enhanced safety. With this objective, various Advanced Driver Assistance Systems (ADAS) regulations are proposed to be introduced in the Indian market. ADAS such as, Anti-lock Braking Systems, Advanced Emergency Braking systems, Lane Departure Warning Systems, Auto Lane Correction Systems, Driver Drowsiness Monitoring Systems, etc., assist the driver during driving. They tend to reduce road accidents and related fatalities by their advanced and artificial intelligent fed programs. This paper will share an insight on the past, recent trends and the upcoming developments in the regulation domain with respect to safety.
Technical Paper

Calibration of an Inertial Measurement Unit and Its Impact on Antilock Braking System Performance

2024-01-16
2024-26-0014
An Inertial Measurement Unit (IMU) provides vehicle acceleration that can be used in Active Vehicle Safety Systems (AVSSs). However, the signal output from an IMU is affected by changes in its position in the vehicle and alignment, which may lead to degradation in AVSS performance. Investigators have employed physics and data-based models for countering the impact of sensor misalignment, and the effects of gravity on acceleration measurements. While physics-based methods utilize parameters varying dynamically with vehicle motion, data-based methods require an extensive number of parameters making them computationally expensive. These factors make the above-explored methods practically challenging to implement on production vehicles. This study considers a 6-axis IMU and evaluates its impact on Antilock Braking System (ABS) performance by considering the IMU signal obtained with different mounting orientations, and positions on a Heavy Commercial Road Vehicle (HCRV).
X