Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Optimal Sensor Configuration and Fault-Tolerant Estimation of Vehicle States

2013-04-08
2013-01-0175
This paper discusses observability of the vehicle states using different sensor configurations as well as fault-tolerant estimation of these states. The optimality of the sensor configurations is assessed through different observability measures and by using a 3-DOF linear vehicle model that incorporates yaw, roll and lateral motions of the vehicle. The most optimal sensor configuration is adopted and an observer is designed to estimate the states of the vehicle handling dynamics. Robustness of the observer against sensor failure is investigated. A fault-tolerant adaptive estimation algorithm is developed to mitigate any possible faults arising from the sensor failures. Effectiveness of the proposed fault-tolerant estimation scheme is demonstrated through numerical analysis and CarSim simulation.
Journal Article

Optimal Torque Control for an Electric-Drive Vehicle with In-Wheel Motors: Implementation and Experiments

2013-04-08
2013-01-0674
This paper presents the implementation of an off-line optimized torque vectoring controller on an electric-drive vehicle with four in-wheel motors for driver assistance and handling performance enhancement. The controller takes vehicle longitudinal, lateral, and yaw acceleration signals as feedback using the concept of state-derivative feedback control. The objective of the controller is to optimally control the vehicle motion according to the driver commands. Reference signals are first calculated using a driver command interpreter to accurately interpret what the driver intends for the vehicle motion. The controller then adjusts the braking/throttle outputs based on discrepancy between the vehicle response and the interpreter command.
Technical Paper

Vehicle Stability through Integrated Active Steering and Differential Braking

2006-04-03
2006-01-1022
This paper proposes a vehicle performance/safety method using combined active steering and differential braking to achieve yaw stability and rollover avoidance. The advantages and disadvantages of active steering and differential braking control methods are identified under a variety of input signals, such as J-turn, sinusoidal, and fishhook inputs by using the implemented linear 4 DOF model. Also, the nonlinear model of the vehicle is evaluated and verified through individual and integrated controller. Each controller gives the correction steering angle and correction moment to the simplified steering and braking actuators. The integrated active steering and differential braking control are shown to be most efficient in achieving yaw stability and rollover avoidance, while active steering and differential braking control has been shown to improve the vehicle performance and safety only in yaw stability and rollover avoidance, respectively.
X