Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Incorporating Advanced Controls, Displays and other Smart Elements into Space Suit Design

2009-07-12
2009-01-2472
The MX-2 neutral buoyancy space suit analogue has been designed and developed at the University of Maryland to facilitate analysis of space suit components and assessment of the benefits of advanced space suit technologies, The MX-2 replicates the salient features of microgravity pressure suits, including the induced joint torques, visual, auditory and thermal environments, and microgravity through the use of neutral buoyancy simulation. In this paper, design upgrades and recent operations of the suit are outlined, including many experiments and tests of advanced space suit technologies, This paper focuses on the work done using the MX-2 to implement and investigate various advanced controls and displays within the suit, to enhance crewmember situational awareness and effectiveness, and enable human-robotic interaction.
Technical Paper

Interface for EVA Human-Machine Interaction

2008-06-29
2008-01-1986
There has recently been an increasing focus on humans working cooperatively with robotic systems in space exploration and operations. Considerable work has been performed on distributed architectures to enable such interaction. The research described here looks at the human-robot interaction from the EVA astronaut's perspective, describing a first generation human-machine interface implemented and tested on an existing experimental spacesuit analog, the MX-2. The ultimate goal is to enable EVA astronauts to operate more independently of remote operators and work effectively with autonomous and teleoperated robots. The current system integrates speech interaction and visual interfaces as a first step towards this goal.
Technical Paper

Dynamic Analysis of an Adjustable Torso Design for a Planetary Pressure Suit

2008-06-29
2008-01-1995
The research discussed in this paper demonstrates further advancements in the concept of a Morphing Upper Torso, which incorporates robotic elements within the pressure suit design to enable a resizable, highly mobile and easy to donn/doff spacesuit. A full scale experimental model has been made, which accompanies several analytical models. The Jacobian matrix for the robotic system, which multiplies the total twist vector of the system to yield the vector of actuator velocities, is derived. This dynamic analysis enables quantification of the dynamic actuator requirements, given demanded trajectories of the rings. A motion capture pilot study was done to develop a methodology to obtain measurements of suit movement and hence the ring trajectories. Subjects performed various tasks that a suited astronaut may perform on a planetary surface, while wearing a torso mockup within the motion capture system.
Technical Paper

Kinematic Analysis of a Robotically Augmented Pressure Suit for Planetary Exploration

2007-07-09
2007-01-3171
The next generation of pressure suits must enable large-scale planetary Extra-Vehicular Activities (EVA). Astronauts exploring the moon and Mars will be required to walk many kilometers, carry large loads, perform intricate experiments, and extract geological samples. Advanced pressure suit architectures must be developed to allow astronauts to perform these and other tasks simply and effectively. The research developed here demonstrates integration of robotics technology into pressure suit design. The concept of a robotically augmented pressure suit for planetary exploration has been developed through the use of analytical and experimental investigations. Two unique torso configurations are examined, including a Soft/Hard Upper Torso with individually adjustable bearings, as well as advances in Morphing Upper Torso research, in which an all-soft torso is analyzed as a system of interconnected parallel manipulators.
Technical Paper

System Overview and Operations of the MX-2 Neutral Buoyancy Space Suit Analogue

2006-07-17
2006-01-2287
A fully operational space suit analogue for use in a neutral buoyancy environment has been developed and tested by the University of Maryland’s Space Systems Laboratory. Repeated manned operations in the Neutral Buoyancy Research Facility have shown the MX-2 suit analogue to be a realistic simulation of operational EVA pressure suits. The suit is routinely used for EVA simulation, providing reasonable joint restrictions, work envelopes, and visual and audio environments comparable to those of current EVA suits. Improved gloves and boots, communications carrier assembly, in-suit drink bag and harness system have furthered the semblance to EVA. Advanced resizing and ballasting systems have enabled subjects ranging in height from 5′8″ to 6′3″ and within a range of 120 lbs to obtain experience in the suit. Furthermore, integral suit instrumentation facilitates monitoring and collection of critical data on both the suit and the subject.
X