Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Roadnoise Reduction through Component-TPA with Test and Simulation convergence using Blocked Force

2024-06-12
2024-01-2952
While conventional methods like classical Transfer Path Analysis (TPA), Multiple Coherence Analysis (MCA), Operational Deflection Shape (ODS), and Modal Analysis have been widely used for road noise reduction, component-TPA from Model Based System Engineering (MBSE) is gaining attention for its ability to efficiently develop complex mobility systems. In this research, we propose a method to achieve road noise targets in the early stage of vehicle development using component-level TPA based on the blocked force method. An important point is to ensure convergence of measured test results (e.g. sound pressure at driver ear) and simulation results from component TPA. To conduct component-TPA, it is essential to have an independent tire model consisting of tire blocked force and tire Frequency Response Function (FRF), as well as full vehicle FRF and vehicle hub FRF.
Technical Paper

A Low-Cost System for Road Induced Tire Cavity Noise Control (RTNC)

2024-06-12
2024-01-2961
The transition from ICE to electric power trains in new vehicles along with the application of advanced active and passive noise reduction solutions has intensified the perception of noise sources not directly linked to the propulsion system. This includes road noise as amplified by the tire cavity resonance. This resonance mainly depends on tire geometry, air temperature inside the tire and vehicle speed and is increasingly audible for larger wheels and heavier vehicles, as they are typical for current electrical SUV designs. Active technologies can be applied to significantly reduce narrow band tire cavity noise with low costs and minimal weight increase. Like ANC systems for ICE powertrains, they make use of the audio system in the vehicle. In this paper, a novel low-cost system for road induced tire cavity noise control (RTNC) is presented that reduces the tire cavity resonance noise inside a car cabin.
Technical Paper

Making modal analysis easy and more reliable – Reference points identification by experimental prestudy

2024-06-12
2024-01-2931
Though modal analysis is a common tool to evaluate the dynamic properties of a structure, there are still many individual decisions to be made during the process which are often based on experience and make it difficult for occasional users to gain reliable and correct results. One of those experience-based choices is the correct number and placement of reference points. This decision is especially important, because it must be made right in the beginning of the process and a wrong choice is only noticeable in the very end of the process. Picking the wrong reference points could result in incomplete modal analysis outcomes, as it might make certain modes undetectable, compounded by the user's lack of awareness about these missing modes. In the paper an innovative approach will be presented to choose the minimal number of mandatory reference points and their placement.
Technical Paper

New Equivalent Static Load (ESL) Creation Procedure for Complete Vehicle

2024-06-12
2024-01-2944
By analyzing the dynamic distortion in all body closure openings in a complete vehicle, a better understanding of the body characteristics can be achieved compared to traditional static load cases such as static torsional body stiffness. This is particularly relevant for non-traditional vehicle layouts and electric vehicle architectures. The body response is measured with the so-called Multi Stethoscope (MSS) when driving a vehicle on a rough pavé road (cobble stone). The MSS is measuring the distortion in each opening in two diagonals. During the virtual development, the distortion is described by the relative displacement in diagonal direction in time domain using a modal transient analysis. The results are shown as Opening Distortion Fingerprint ODF and used as assessment criteria within Solidity and Perceived Quality. By applying the Principal Component Analysis (PCA) on the time history of the distortion, a Dominant Distortion Pattern (DDP) can be identified.
Technical Paper

Automatic Maneuver Detection in Flight Data using Wavelet Transform and Deep Learning Algorithms

2024-06-01
2024-26-0462
The evaluation of aircraft characteristics through flight test maneuvers is fundamental to aviation safety and understanding flight attributes. This research project proposes a comprehensive methodology to detect and analyze aircraft maneuvers using full flight data, combining signal processing and machine learning techniques. Leveraging the Wavelet Transform, we unveil intricate temporal details within flight data, uncovering critical time-frequency insights essential for aviation safety. The integration of Long Short-Term Memory (LSTM) models enhances our ability to capture temporal dependencies, surpassing the capabilities of machine learning in isolation. These extracted maneuvers not only aid in safety but also find practical applications in system identification, air-data calibration, and performance analysis, significantly reducing pre-processing time for analysts.
Technical Paper

Generating Reduced-Order Image Data and Detecting Defect Map on Structural Components using Ultrasonic Guided Wave Scan

2024-06-01
2024-26-0416
The paper presents a theoretical framework for the detection and first-level preliminary identification of potential defects on aero-structure components while employing ultrasonic guided wave based structural health monitoring strategies, systems and tools. In particular, we focus our study on ground inspection using laser-Doppler scan of surface velocity field, which can also be partly reconstructed or monitored using point sensors and actuators on-board structurally integrated. Using direct wave field data, we first question the detectability of potential defects of unknown location, size, and detailed features. Defects could be manufacturing defects or variations, which may be acceptable from design and qualification standpoint; however, those may cause significant background signal artifacts in differentiating structure progressive damage or sudden failure like impact-induced damage and fracture.
Technical Paper

A Systematic Approach for Creation of SOTIF’s Unknown Unsafe Scenarios: An Optimization based Method

2024-04-09
2024-01-1966
Verification and validation (V&V) of autonomous vehicles (AVs) is a challenging task. AVs must be thoroughly tested, to ensure their safe functionality in complex traffic situations including rare but safety-relevant events. Furthermore, AVs must mitigate risks and hazards that result from functional insufficiencies, as described in the Safety of the Intended Functionality (SOTIF) standard. SOTIF analysis includes iterative identification of driving scenarios that are not only unsafe, but also unknown. However, identifying SOTIF’s unknown-unsafe scenarios is an open challenge. In this paper we proposed a systematic optimization-based approach for identification of unknown-unsafe scenarios. The proposed approach consists of three main steps including data collection, feature extraction and optimization towards unknown unsafe scenarios.
Technical Paper

Research on Vehicle Type Recognition Based on Improved YOLOv5 Algorithm

2024-04-09
2024-01-1992
As a key technology of intelligent transportation system, vehicle type recognition plays an important role in ensuring traffic safety,optimizing traffic management and improving traffic efficiency, which provides strong support for the development of modern society and the intelligent construction of traffic system. Aiming at the problems of large number of parameters, low detection efficiency and poor real-time performance in existing vehicle type recognition algorithms, this paper proposes an improved vehicle type recognition algorithm based on YOLOv5. Firstly, the lightweight network model MobileNet-V3 is used to replace the backbone feature extraction network CSPDarknet53 of the YOLOv5 model. The parameter quantity and computational complexity of the model are greatly reduced by replacing the standard convolution with the depthwise separable convolution, and enabled the model to maintain higher accuracy while having faster reasoning speed.
Technical Paper

A Suspension Tuning Parameter Study for Brake Pulsation

2024-04-09
2024-01-2319
Brake pulsation is a low frequency vibration phenomenon in brake judder. In this study, a simulation approach has been developed to understand the physics behind brake pulsation employing a full vehicle dynamics CAE model. The full vehicle dynamic model was further studied to understand the impact of suspension tuning variation to brake pulsation performance. Brake torque variation (BTV) due to brake thickness variation from uneven rotor wear was represented mathematically in a sinusoidal form. The wheel assembly vibration from the brake torque variation is transmitted to driver interface points such as the seat track and the steering wheel. The steering wheel lateral acceleration at the 12 o’clock position, driver seat acceleration, and spindle fore-aft acceleration were reviewed to explore the physics of brake pulsation. It was found that the phase angle between the left and right brake torque generated a huge variation in brake pulsation performance.
Technical Paper

Analysis and Design of Suspension State Observer for Wheel Load Estimation

2024-04-09
2024-01-2285
Tire forces and moments play an important role in vehicle dynamics and safety. X-by-wire chassis components including active suspension, electronic powered steering, by-wire braking, etc can take the tire forces as inputs to improve vehicle’s dynamic performance. In order to measure the accurate dynamic wheel load, most of the researches focused on the kinematic parameters such as body longitudinal and lateral acceleration, load transfer and etc. In this paper, the authors focus on the suspension system, avoiding the dependence on accurate mass and aerodynamics model of the whole vehicle. The geometry of the suspension is equated by the spatial parallel mechanism model (RSSR model), which improves the calculation speed while ensuring the accuracy. A suspension force observer is created, which contains parameters including spring damper compression length, push rod force, knuckle accelerations, etc., combing the kinematic and dynamic characteristic of the vehicle.
Technical Paper

Tire Force Estimation Using Intelligent Tire System Detecting Carcass Deformation

2024-04-09
2024-01-2293
In this paper, an intelligent tire system is designed to estimate tire force by detecting the tire carcass deformation. The intelligent tire system includes a set of marker points on the inner liner of the tire to locate the position of tire carcass and a camera mounted on the rim to capture the position of these points under different driving conditions. An image recognition program is used to identify the coordinates of the marker points in order to determine the deformation of the tire carcass. According to the tire carcass stiffness test and the general tire carcass deformation theory, an approximate linear relationship between tire force and carcass deformation in all directions was obtained. The vertical force of the tire is determined by the distance between adjacent marker points. The longitudinal force and lateral force of the tire are estimated by measuring the longitudinal and lateral displacements of the marker points.
Technical Paper

A Path Tracking Method for an Unmanned Bicycle Based on the Body-Fixed Coordinate Frame

2024-04-09
2024-01-2303
The present study introduces a novel approach for achieving path tracking of an unmanned bicycle in its local body-fixed coordinate frame. A bicycle is generally recognized as a multibody system consisting of four distinct rigid bodies, namely the front wheel, the front fork, the body frame, and the rear wheel. In contrast to most previous studies, the relationship between a tire and the road is now considered in terms of tire forces rather than nonholonomic constraints. The body frame has six degrees of freedom, while the rear wheel and front fork each have one degree of freedom relative to the body frame. The front wheel exhibits a single degree of freedom relative to the front fork. A bicycle has a total of nine degrees of freedom.
Technical Paper

Road Feel Modeling and Return Control Strategy for Steer-by-Wire Systems

2024-04-09
2024-01-2316
The steer-by-wire (SBW) system, an integral component of the drive-by-wire chassis responsible for controlling the lateral motion of a vehicle, plays a pivotal role in enhancing vehicle safety. However, it poses a unique challenge concerning steering wheel return control, primarily due to its fundamental characteristic of severing the mechanical connection between the steering wheel and the turning wheel. This disconnect results in the inability to directly transmit the self-aligning torque to the steering wheel, giving rise to complications in ensuring a seamless return process. In order to realize precise control of steering wheel return, solving the problem of insufficient low-speed return and high-speed return overshoot of the steering wheel of the SBW system, this paper proposes a steering wheel active return control strategy for SBW system based on the backstepping control method.
Technical Paper

Uniformity Identification and Sensitivity Analysis of Water Content of Each PEM Fuel Cell Based on New Online High Frequency Resistance Measurement Technique

2024-04-09
2024-01-2189
Water content estimation is a key problem for studying the PEM fuel cell. When several hundred fuel cells are connected in serial and their active surface area is enlarged for sufficient power, the difference between cells becomes significant with respect to voltage and water content. The voltage of each cell is measurable by the cell voltage monitor (CVM) while it is difficult to estimate water content of the individual. Resistance of the polymer electrolyte membrane is monotonically related to its water content, so that the new online high frequency resistance (HFR) measurement technique is investigated to identify the uniformity of water content between cells and analyze its sensitivity to operating conditions in this paper. Firstly, the accuracy of the proposed technique is experimentally validated to be comparable to that of a commercialized electrochemical impedance spectroscopy (EIS) measurement equipment.
Technical Paper

Fully Retractable Easy Access Spare Wheel Carrier Mechanism for Commercial Vehicles

2024-04-09
2024-01-2225
The new idea discussed in this paper pertains to the carrier mechanism for spare wheels in heavy commercial vehicles. Typically, these vehicles are equipped with a spare wheel carrier featuring a rope mechanism for loading and unloading the spare wheel. The conventional placement of this system is on the side of the frame/chassis or within the limits of the side member. However, the tire-changing process in this system is often arduous, time-consuming, and requires significant effort. The proposed invention addresses these challenges by repositioning the spare wheel to a vertical orientation, facilitating easier access to its bolts and simplifying the removal process from the mountings. Furthermore, the innovation incorporates a three-way actuation system (Air Actuated, Electric motor-driven, or Hydraulic cylinder actuated mechanisms), thereby reducing the need for manual effort and enhancing driver comfort.
Technical Paper

Multi-Contact Real-Time Tire Model Validation Using a Novel Hardware-in-the-Loop Simulator Apparatus

2024-04-09
2024-01-2275
Simulators are essential part of the development process of vehicles and their advanced functionalities. The combination of virtual simulator and Hardware-in-the-loop technology accelerates the integration and functional validation of ECUs and mechanical components. The aim of this research is to investigate the benefits that can arise from the coupling of a steering Hardware-in-the-loop simulator and an advanced multi-contact tire model, as opposed to the conventional single-contact tire model. On-track tests were executed to collect data necessary for tire modelling using an experimental vehicle equipped with wheel force transducer, to measure force and moments acting on tire contact patch. The steering wheel was instrumented with a torque sensor, while tie-rod axial forces were quantified using loadcells. The same test set has been replicated using the Hardware-in-the-loop simulator using both the single-contact and multi-contact tire model.
Technical Paper

Research on Garbage Recognition of Road Cleaning Vehicle Based on Improved YOLOv5 Algorithm

2024-04-09
2024-01-2003
As a key tool to maintain urban cleanliness and improve the road environment, road cleaning vehicles play an important role in improving the quality of life of residents. However, the traditional road cleaning vehicle requires the driver to monitor the situation of road garbage at all times and manually operate the cleaning process, resulting in an increase in the driver 's work intensity. To solve this problem, this paper proposes a road garbage recognition algorithm based on improved YOLOv5, which aims to reduce labor consumption and improve the efficiency of road cleaning. Firstly, the lightweight network MobileNet-V3 is used to replace the backbone feature extraction network of the YOLOv5 model. The number of parameters and computational complexity of the model are greatly reduced by replacing the standard convolution with the deep separable convolution, which enabled the model to have faster reasoning speed while maintaining higher accuracy.
Technical Paper

Spatio-Temporal Trajectory Planning Using Search And Optimizing Method for Autonomous Driving

2024-04-09
2024-01-2563
In the field of autonomous driving trajectory planning, it’s virtual to ensure real-time planning while guaranteeing feasibility and robustness. Current widely adopted approaches include decoupling path planning and velocity planning based on optimization method, which can’t always yield optimal solutions, especially in complex dynamic scenarios. Furthermore, search-based and sampling-based solutions encounter limitations due to their low resolution and high computational costs. This paper presents a novel spatio-temporal trajectory planning approach that integrates both search-based planning and optimization-based planning method. This approach retains the advantages of search-based method, allowing for the identification of a global optimal solution through search. To address the challenge posed by the non-convex nature of the original solution space, we introduce a spatio-temporal semantic corridor structure, which constructs a convex feasible set for the problem.
Technical Paper

Design, Analysis, and Comparative Study of Conventional Double Wishbone Control Arms with Modified Split Type Control Arms Design for a Passenger Car

2024-04-09
2024-01-2519
In today's automotive industry, the preference for suspension systems in high-end passenger vehicles is shifting away from conventional MacPherson or double wishbone setups and toward advanced double wishbones with split-type control arms or multi-link suspensions. This shift not only enhances the ride and handling experience but also introduces greater design complexities. This paper explains the design limitations of the conventional double wishbone front suspension (with 2 ball joints) and the opportunities presented by advanced double wishbone suspension designs, including split-type lower control arms (with 3 ball joints) and double split-type control arms (with 4 ball joints). Replacing either of the rigid links (upper/lower) of the conventional double wishbone suspension with a four-bar mechanism in the case of split-type control arm wishbone suspension significantly alters the behavior of the kingpin axis, leading to consequential effects on steering and suspension parameters.
Technical Paper

Development and Simulation Validation of a Wheel/Tire Selective-Matching Algorithm Considering an Error Function of Wheel Runout Measuring Equipment

2024-04-09
2024-01-2651
In this study, a novel selective matching logic for a wheel/tire is proposed, to decrease the vehicle driving vibration caused by wheel/tire non-uniformity. The new logic was validated through matching simulation/in-line matching evaluation. A theoretical radial force variation model was established by considering the theoretical model of the existing references and the wheel/tire assembly mechanism. The model was validated with ZF’s high-speed uniformity equipment, which is standard in the tire industry. The validity of the new matching logic was verified through matching simulation and mass production in-line evaluation. In conclusion, the novel logic presented herein was demonstrated to effectively decrease the radial force variation caused by the wheel/tire.
X