Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

Pre-ignition Behavior of Gasoline Blends in a Single- Cylinder Engine with Varying Boost Pressure and Compression Ratio

2023-09-29
2023-32-0120
Pre-ignition in a boosted spark-ignition engine can be triggered by several mechanisms, including oil-fuel droplets, deposits, overheated engine components and gas-phase autoignition of the fuel-air mixture. A high pre-ignition resistance of the fuel used mitigates the risk of engine damage, since pre-ignition can evolve into super-knock. This paper presents the pre-ignition propensities of 11 RON 89-100+ gasoline fuel blends in a single-cylinder research engine. Albeit the addition of two high-octane components (methanol and reformate) to a toluene primary reference fuel improved the pre-ignition resistance, one high-RON fuel experienced runaway pre-ignition at relatively low boost pressure levels. A comparison of RON 96 blends showed that the fuel composition can affect pre-ignition resistance at constant RON.
Technical Paper

Experimental Study on Flash Boiling of Ammonia Fuel Sprays – A Potential Alternative Fuel

2023-04-11
2023-01-0304
The current transportation fuels have been one of the biggest contributors towards climate change and greenhouse gas emissions. The use of carbon-free fuels has constantly been endorsed through legislations in order to limit the global greenhouse gas emissions. In this regard, ammonia is seen as a potential alternative fuel, because of its carbon-free nature, higher octane number and as hydrogen carrier. Furthermore, many leading maritime companies are doing enormous research and planning projects to utilize ammonia as their future carbon-free fuel by 2050. Flash boiling phenomenon can significantly improve combustion by enhancing the spray breakup process and ammonia possessing low boiling point, has a considerable potential for flash boiling. However, present literature is missing abundant research data on superheated ammonia sprays.
Technical Paper

Experimental and Numerical Investigation of Hydrogen Jet-Wall Impingement

2022-08-30
2022-01-1009
Decarbonization of the automotive industry is one of the major challenges in the transportation sector, according to the recently proposed climate neutrality policies, e.g., the EU 'Fit for 55' package. Hydrogen as a carbon-free energy career is a promising alternative fuel to reduce greenhouse gas emissions. The main objective of the present study is to investigate non-reactive hydrogen jet impingement on a piston bowl profile at different injection angles and under the effect of various pressure ratios (PR), where PR is the relative ratio of injection pressure (IP) to chamber pressure (CP). This study helps to gain further insight into the mixture formation in a heavy-duty hydrogen engine, which is critical in predicting combustion efficiency. In the experimental campaign, a typical high-speed z-type Schlieren method is applied for visualizing the jet from the lateral windows of a constant volume chamber, and two custom codes are developed for post-processing the results.
Technical Paper

Predicting Distillation Properties of Gasoline Fuel Blends using Machine Learning

2022-08-30
2022-01-1086
Distillation properties of gasoline are regulated to ensure the safe and efficient operation of SI-engines. Blending various gasoline components affects the distillation values in a non-linear fashion, making the prediction of these properties challenging. Furthermore, the rise of renewable components necessitates the development of new property prediction methods. In this work, a variety of Machine Learning models were created to predict the distillation points of gasoline blends based on the blending recipe. As input data, real industrial data from a refinery was used together with data from blends created for R&D purposes. The predicted properties were the evaporated volume at the 70 and 100 °C distillation points (E70 and E100). Altogether four different machine learning models were trained, cross-validated and tested using seven different pre-processing methods. It was found that Support Vector Regression (SVR) was the most effective at predicting the distillation points.
Technical Paper

Analysis of Gasoline Surrogate Combustion Chemistry with a Skeletal Mechanism

2020-09-15
2020-01-2004
Knocking combustion is a major obstacle towards engine downsizing and boosting—popular techniques towards meeting the increasingly stringent emission standards of SI engines. The commercially available gasoline is a mixture of many chemical compounds like paraffins, isoparaffins, olefins and aromatics⁠. Therefore, the modeling of its combustion process is a difficult task. Additionally, the blends of certain compounds exhibit non-linear behavior in comparison to the pure components in terms of knock resistance. These facts require further analysis from the perspective of combustion chemistry. The present work analyses the effects of blending ethanol to FACE-C gasoline. A range of pressures, temperatures, and equivalence ratios has been considered for this purpose. The open source softwares Cantera version 2.4.0 and OpenSMOKE++ Suite have been used for the simulations.
Technical Paper

Application of Synthetic Renewable Methanol to Power the Future Propulsion

2020-09-15
2020-01-2151
As CO2 emissions from traffic must be reduced and fossil-based traffic fuels need to phase out, bio-based traffic fuels alone cannot meet the future demand due to their restricted availability. Another way to support fossil phase-out is to include synthetic fuels that are produced from circular carbon sources with renewable energy. Several different fuel types have been proposed, while, methanol only requires little processing from raw materials and could be used directly or as a drop-in fuel for some of the current engine fleet. CO2 emissions arising from fuel production are significantly reduced for synthetic renewable methanol compared to the production of fossil gasoline. Methanol has numerous advantages over the currently used fossil fuels with high RON and flame speed in spark-ignition engines as well as high efficiency and low emissions in combustion ignition engines.
Technical Paper

Impact of Ethane Enrichment on Diesel-Methane Dual-Fuel Combustion

2020-04-14
2020-01-0305
Over the past few years, the growing concerns about global warming and efforts to reduce engine-out emissions have made the dual-fuel (DF) engines more popular in marine and power industries. The use of natural gas as an alternative fuel in DF engines has both the environmental and economic advantages over the conventional diesel combustion. However, the misfire phenomenon at lean conditions limits the operating range of DF combustion and causes emissions of unburned hydrocarbon (UHC) and unburned methane (methane-slip) in the environment. The greenhouse effect of methane is considered 28 times greater than CO2 over a 100-year perspective, which raises concerns for the governments and marine engine manufacturers. In efforts to reduce the UHC and methane-slip from DF engines, this study discusses ethane enrichment of diesel-methane DF combustion in a full-metal single-cylinder research engine under lean condition (λGFB = ~2.0) while keeping the total-fuel energy rather constant.
Technical Paper

Modeling the Impact of Alternative Fuel Properties on Light Vehicle Engine Performance and Greenhouse Gases Emissions

2019-12-19
2019-01-2308
The present-day transport sector needs sustainable energy solutions. Substitution of fossil-fuels with fuels produced from biomass is one of the most relevant solutions for the sector. Nevertheless, bringing biofuels into the market is associated with many challenges that policymakers, feedstock suppliers, fuel producers, and engine manufacturers need to overcome. The main objective of this research is an investigation of the impact of alternative fuel properties on light vehicle engine performance and greenhouse gases (GHG). The purpose of the present study is to provide decision-makers with tools that will accelerate the implementation of biofuels into the market. As a result, two models were developed, that represent the impact of fuel properties on engine performance in a uniform and reliable way but also with very high accuracy (coefficients of determination over 0.95) and from the end-user point of view.
Technical Paper

An Optical Characterization of Dual-Fuel Combustion in a Heavy-Duty Diesel Engine

2018-04-03
2018-01-0252
Dual fuel (DF) combustion technology as a feasible approach controlling engine-out emissions facilitates the concept of fuel flexibility in diesel engines. The abundance of natural gas (90-95% methane) and its relatively low-price and the clean-burning characteristic has attracted the interest of engine manufacturers. Moreover, with the low C/H ratio and very low soot producing tendency of methane combined with high engine efficiency makes it a viable primary fuel for diesel engines. However, the fundamental knowledge on in-cylinder combustion phenomena still remains limited and needs to be studied for further advances in the research on DF technology. The objective of this study is to investigate the ignition delay with the effect of, 1) methane equivalence ratio, 2) intake air temperature and 3) pilot ratio on the diesel-methane DF-combustion. Combustion phenomenon was visualized in a single cylinder heavy-duty diesel engine modified for DF operations with an optical access.
Technical Paper

Dual-Fuel Combustion Characterization on Lean Conditions and High Loads

2017-03-28
2017-01-0759
Dual-fuel technology is suggested as a solution for effectively utilizing alternative fuel types in the near future. Charge air mixed methane combined with a compression ignition engine utilizing a small diesel pilot injection seems to form a worthwhile compromise between good engine efficiency and low emission outcome. Problems concerning dual-fuel technology profitableness seems to be related to fully control the combustion in relation to lean conditions. Lean operating conditions solves the problems concerning pumping losses, but brings challenges in controlling the slow heat release of the premixed methane-air mixture. In the present work, a single cylinder ‘free parameter’ diesel engine was adapted for dual-fuel (diesel-methane) usage. A parameter study related to lambda window widening possibilities was carried out.
Journal Article

Characteristics of High Pressure Jets for Direct Injection Gas Engine

2013-04-08
2013-01-1619
The direct injection (DI) natural gas engine is considered as one of the promising technologies to achieve the continuing goals of the higher efficiency and reduced emissions for internal combustion engines. Shock wave phenomena can easily occur near the nozzle exit when high pressure gaseous fuel is injected directly into the engine cylinder. In the present study, high pressure gas issuing from a prototype gas injector was experimentally studied using planar laser-induced fluorescence (PLIF) technique. Acetone was selected as a fuel tracer. The effects of injection pressures on the flow structure and turbulent mixing were investigated based on a series of high resolution images. The jet macroscopic structures, such as jet penetration, cone angle and jet volume, are analyzed under different injection pressures. Results show that barrel shock waves can significantly influence the jet flow structure and turbulent mixing.
Technical Paper

Emission Reduction Potential with Paraffinic Renewable Diesel by Optimizing Engine Settings or Using Oxygenate

2012-09-10
2012-01-1590
Over the past decade significant research and development activities have been invested in alternative fuels in order to reduce our dependency on fossil fuel sources and reduce CO₂ and local emissions from traffic. One result of these R&D efforts is paraffinic diesel fuels, which can be used with existing vehicle fleets and infrastructures. Paraffinic diesels also have other benefits compared to conventional diesels, for example, a very high cetane number and the lack of sulfur and aromatic compounds. These characteristics are beneficial in terms of exhaust gas emissions, something which has been demonstrated in numerous studies. The objective of this study was to develop low-emission combustion technologies for paraffinic renewable diesel in a compression ignition engine, and to study the possible benefits of oxygenated paraffinic diesel.
Technical Paper

An Experimental Study on High Pressure Pulsed Jets for DI Gas Engine Using Planar Laser-Induced Fluorescence

2012-09-10
2012-01-1655
Compressed natural gas direct-injection (CNG-DI) engines based on diesel cycle combustion system with pilot ignition have ability to achieve high thermal efficiency and low emissions. Generally, underexpanded jets can be formed when the high pressure natural gas is injected into the combustion chamber. In such conditions, shock wave phenomena are the typical behaviors of the jet, which can significantly influence the downstream flow structure and turbulent mixing. In the present study, the characteristics of high-pressure transient jets were investigated using planar laser-induced fluorescence (PLIF) of acetone as a fuel tracer. The evolution of the pulsed jet shows that there are three typical jet flow patterns (subsonic, moderately underexpanded, and highly underexpanded) during the injection. The full injection process of high-pressure pulsed jets is well described with the help of these shock wave structures.
Technical Paper

Experimental Study on Structure and Mixing of Low-Pressure Gas Jet Using Tracer-Based PLIF Technique

2011-09-11
2011-24-0039
Natural gas has been considered as one promising alternative fuel for internal combustion (IC) engines to meet strict engine emission regulations and reduce the dependence on petroleum oil. Although compressed natural gas (CNG) intake manifold injection has been successfully applied into spark ignition (SI) engines in the past decade, natural gas direct injection compression ignition (DICI) engine with new injection system is being pursued to improve engine performance. Gas jet behaves significantly different from liquid fuels, so the better understanding of the effects of gas jet on fuel distribution and mixing process is essential for combustion and emission optimization. The present work is aimed to gain further insight into the characteristics of low pressure gas jet. An experimental gas jet investigation has been successfully conducted using tracer-based planar laser-induced fluorescence (PLIF) technique. For safety reason, nitrogen (N₂) was instead of CNG in this study.
X