Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Reducing the Probability of Error in Testing and Simulation

2023-05-08
2023-01-1114
Simulation and testing are often done by different engineers in different departments of a company. This can lead to disconnects and unrealistic predictions, especially if the person doing simulations does not have an experimental background. On the other hand, experimental results can also include errors that result in misleading answers. It is important for the engineer doing either testing or simulation to have a good understanding for what results are plausible and what results might be suspect. This paper will provide examples where error crept into testing or simulation that could have been caught and corrected early if a good feel for “reasonable” results had been in place. The importance of understanding how a software package is analyzing the data will be explained, since settings buried deep within a menu structure can drive misleading results.
Technical Paper

Noise Benchmarking of the Detroit Diesel DD15 Engine

2011-05-17
2011-01-1566
Several new or significantly upgraded heavy duty truck engines are being introduced in the North American market. One important aspect of these new or revised engines is their noise characteristics. This paper describes the noise related characteristics of the new DD15 engine, and compares them to other competitive heavy truck engines. DD15 engine features relevant to noise include a rear gear train, isolated oil pan and valve cover, and an amplified high pressure common rail fuel system. The transition between non-amplified and amplified common rail operation is shown to have a significant noise impact, not unlike the transition between pilot injection and single shot injection in some other engines.
Technical Paper

A Multi-Variable Experimental Study of Diesel Geartrain Rattle

2011-05-17
2011-01-1561
Geartrain noise can be a significant contribution to the overall sound level of diesel engines. Some engine manufacturers employ isolation solutions such as sound deadening covers and foam panels to combat the problem, but these add cost. Little has been published on geartrain noise reduction, and public standards for diesel geartrain design and development are not available. This paper describes an experimental study of the relative influence of gear design parameters on the rattle noise of a diesel engine timing geartrain. The geartrains of several diesel engines were benchmarked to determine the noise reduction strategies employed. A total of three gear sets were designed and tested in a 3.3L four cylinder normally aspirated diesel engine. The experimentation quantified the influence of an anti backlash idler gear in reducing gear rattle noise, and revealed that a key path for gear rattle noise transmission is through an idler gear journal bearing shaft.
Training / Education

Diesel Engine Noise Control Web Course RePlay

Anytime
This web course provides an in-depth overview of diesel engine noise including combustion and mechanical noise sources. In addition, the instructor will discuss a system approach to automotive integration including combining sub-systems and components to achieve overall vehicle noise and vibration goals.
Technical Paper

Diesel Combustion Mode Switching - A Substantial NVH Challenge

2009-05-19
2009-01-2080
Tier 2, bin 5 diesel engines may use multiple combustion modes to achieve stringent emissions requirements. Unfortunately, switching between different combustion modes can cause step changes in noise that will be unacceptable to consumers. In this paper, several sound quality metrics are evaluated for their ability to quantify the NVH issues that arise during a rich pulse event. In addition, techniques are presented that allow an engine developer to reduce the NVH effects caused by changing combustion modes. Careful calibration tuning in close cooperation with performance and emissions development engineers is required to solve noise problems that arise from combustion mode switching events, since an NVH improvement may often come at the expense of a performance or emissions issue.
Technical Paper

The Effect of Environmental Aging on Intumescent Mat Material Durability at Low Temperatures

2002-03-04
2002-01-1099
Mat material durability data in the form of fragility curves were generated in a critical temperature region for three intumescent mat materials considered for low temperature converter applications. The mat materials were tested in a tourniquet wrap converter configuration employing a cylindrical ceramic substrate. Prior to developing durability data for these mat materials, the test items were subjected to various environmental thermal and/or vibration aging conditions. Mat material fragility data were generated in terms of the dynamic force required to impose prescribed differential motion between the can and substrate, thereby, subjecting the mat material to a dynamic shearing like that expected during resonant excitation. As expected, it was found that the mat material capacity to resist shearing deformation decreased when the test samples were subjected to 36 hours of low temperature thermal cyclic aging.
Technical Paper

Catalytic Converter Mat Material Durability Measurement Under Controlled Thermal and Vibration Environments

2000-03-06
2000-01-0221
To aid in the catalytic converter design and development process, a test apparatus was designed and built which will allow comparative evaluation of the durability of candidate mat materials under highly controlled thermal and vibration environments. The apparatus directly controls relative shear deflection between the substrate and can to impose known levels of mat material strain while recording the transmitted shear force across the mat material. Substrate and can temperatures are controlled at constant levels using a resistive thermal exposure (RTE) technique. Mat material fatigue after several million cycles is evident by a substantial decrease in the transmitted force. A fragility test was found to be an excellent method to quickly compare candidate materials to be used for a specific application. Examples of test results from several materials are given to show the utility of the mat material evaluation technique.
Technical Paper

Catalytic Converter Vibration Measurement Under Dynamometer Simulated Roadloads

2000-03-06
2000-01-0029
In order to further reduce vehicle cold-start emissions, the use of catalytic converters that are “close-coupled” to the exhaust manifold is increasing. To understand the vibrational environment of close-coupled and underbody converters, a laboratory study was conducted on several passenger vehicles. Catalytic converter vibration spectra were measured on a chassis dynamometer with the vehicle operating over a variety of test conditions. Vehicle operating conditions included hard accelerations and extended steady-state speeds at distinct throttle positions over zero-percent and four-percent simulated road grades.
Technical Paper

Advanced Nondestructive Testing Methods for Bearing Inspection

1972-02-01
720172
The principles of the magnetic-perturbation method of flaw detection and the Barkhausen noise residual stress measurement method are briefly reviewed. It is suggested that they provide very powerful tools for assuring improved ball bearing performance. The methods are applied for the evaluation of ball bearing races. Typical experimental results are presented along with metallurgical sectioning correlation.
Technical Paper

Noise Reduction Techniques as They Apply to Engine-Generator Design and Treatment

1969-02-01
690755
Small engines may require soundproofing to eliminate one or more of the following effects: hearing loss, speech interference, community annoyance, detectability, and psychological disorientation. Detectability criteria are frequently associated with military applications and may require the use of a soundproof enclosure in addition to other engine treatments. Acoustical noise sources are conveniently classed as either aerodynamic or mechanical. Aerodynamic sources are predominant on small engines. Treatment of exhaust noise by individual components, e.g., muffler, is inadequate; a system approach, through the use of an electro-acoustic analog computer, has proved to be a much more satisfactory procedure.
Technical Paper

A Bench Test Facility for Engine Muffler Evaluation

1963-01-01
630283
The problem associated with laboratory evaluation of muffler acoustical characteristics are complicated both by the acoustical considerations involved in obtaining an adequate noise source and by the ambiguities involved in defining what constitutes quality in a muffler built for general application. In order to quantitatively define the characteristics of quality mufflers, an extensive series of field tests were conducted on a variety of sizes and types of mufflers in conjunction with four engine configurations. Work then turned to the development of a wide band siren noise source and acoustical test system which would simulate the high impedance character of an engine exhaust noise source, and in addition generate the necessary intensity and spectral characteristics required to obtain test data over the range of noise conditions encountered in the field.
X