Refine Your Search

Topic

Author

Search Results

Technical Paper

Dynamic Spark Advance Technology for Gasoline Fuel Blends

2024-01-16
2024-26-0074
Fuel efficiency is one of the most important customer requirement in Indian market as well as very crucial to meet the upcoming regulation like CAFÉ for Indian Automotive manufacturers. Most of the technology changes to meet this challenge, always come with a cost penalty with hardware addition. To counter the above challenge, a strategy has been identified in the EMS software that will dynamically adapt the spark timing based on fuel octane rating. This strategy has resulted in fuel efficiency improvement on Modified Indian Drive Cycle on chassis dynamometer test and as well as on real life road tests using fuels with various octane number.
Technical Paper

Three Way Catalyst with Faster Light-Off Substrates – A Promising Approach to Reduce Tailpipe Emissions

2024-01-16
2024-26-0142
The ever-tightening regulation norms across the world emphasize the magnitude of the air pollution problem. The decision to leapfrog from BS4 to BS6 – with further reduction in emission limits -showed India’s commitment to clean up its atmosphere. The overall cycle emissions were reduced significantly to meet BS6 targets [1]. However, the introduction of RDE norms in BS6.2 [1] demanded further reduction in emissions under real time operating conditions – start-stop, hard acceleration, idling, cold start – which was possible only through strategies that demanded a cost effective yet robust solutions. The first few seconds of the engine operation after start contribute significantly to the cycle gaseous emissions. This is because the thermal inertia of the catalytic converter restricts the rate at which temperature of the catalyst increases and achieves the desired “light-off” temperature.
Technical Paper

Design and Optimization of Air Intake and Cooling System for Commercial Fuel Cell Electric Vehicles

2024-01-16
2024-26-0178
There is need of the hour to reduce greenhouse gases and become carbon neutral. Global warming and the increase in pollution are big threats to humankind. The Paris agreement is a major step towards reducing pollution and greenhouse gases. To improve the situation, hydrogen fuel cell electric vehicle is a promising technology that enables zero emissions, zero greenhouse gas generation and high efficiency with superior performance for long-range applications as compared to other green technologies. Although it is a promising and beneficial technology, there is limited information available in the public domain about fuel cell technology and its accessories. Air intake and cooling system’s right functioning is very important for proper fuel cell functioning. Incoming air to the fuel cell stack needs to be processed by cleaning, humidifying, cooling or heating. If the incoming air isn't clean, it will deteriorate the fuel cell's performance; it may get blocked, or even damaged.
Technical Paper

Development of an Efficient Vehicle Energy Management System for Fuel Cell Electric Vehicles

2024-01-16
2024-26-0173
Fuel cell electric vehicles generally have two power sources – the fuel cell power system and a high voltage battery pack - to power the vehicle operations. The fuel cell power system is the main source of power for the vehicle and its operations are supported by the battery pack. The battery pack helps to tackle the dynamic power demands from the vehicle such as during acceleration, to which the response of the fuel cell might be slower. The battery is also used to recover the energy from regeneration during braking and can also be used to extend the range of the vehicle in case the storage tanks runs out of hydrogen. In order to maximize the fuel efficiency of the fuel cell power system it is critical that these two power sources are used in conjunction with each other in an optimal manner.
Technical Paper

Effect of Spot Weld Parameter on HAZ of Advanced High Strength Steel Joint

2024-01-16
2024-26-0187
To meet different target of light-weighting, lower fuel economy, crash safety and emission requirement, advanced high strength steel (AHSS) is commonly used in automotive vehicles and has become popular now a days. AHSS material up-to 1500 MPa is commonly used for structural components and major reinforcement of automotive BIW. Manufacturing of AHSS material requires precise control of chemical composition, and subsequent rolling and heat treatment to get optimum combination of required phases In most of the AHSS material microstructure, martensite is present along with ferrite or other phases. Hot stamp steel with strength level 1500 MPa strength also have martensite phase in microstructure after press hardening. However during heating and cooling cycle in resistance spot welding, martensite phase tempering affects hardness at Heat Affected Zone (HAZ).
Technical Paper

Cyber Threats and Its Mitigation to Intelligent Transportation System

2024-01-16
2024-26-0184
With the revolutionary advancements in modern transportation, offering advanced connectivity, automation, and data-driven decision-making has put the intelligent transportation systems (ITS) to a high risk from being exposed to cyber threats. Development of modern transportation infrastructure, connected vehicle technology and its dependency over the cloud with an aim to enhance safety, efficiency, reliability and sustainability of ITS comes with a lot more opportunities to protect the system from black hats. This paper explores the landscape of cyber threats targeting ITS, focusing on their potential impacts, vulnerabilities, and mitigation strategies. The cyber-attacks in ITS are not just limited to Unauthorized Access, Malware and Ransomware Attacks, Data Breaches, Denial of Service but also to Physical Infrastructure Attacks.
Technical Paper

Performance Evaluation Study to Optimize the NOx Conversion Efficiency of SDPF Catalyst for BS6 RDE/OBD2 Engine Application

2024-01-16
2024-26-0161
To meet future emission levels, the automotive industry is trying to reduce tailpipe emissions through both possible pathways, i.e. emission from engines as well as and the development of novel catalytic emission control concepts. The present study will focus on the close coupled SCR on Filter commonly known as SDPF which is a main pathway to reduce NOx along with particulate mass and number for light duty passenger cars and sport utility vehicles for BS 6 RDE/OBD 2 and future legislation like BS-7. The SDPF is a challenging technology as it is critical component in exhaust after treatment system involving in NOx and PM/PN reductions hence careful optimization of this technology is necessary in terms of space velocity requirements, temperature, feed NOx emission levels, particulate mass and ash holding capacities, NH3 storage on the SDPF, and back pressure.
Technical Paper

A Comparative Analysis and Novel Powertrain Topology for FCEVs, Integrating Ultra-Capacitor and Batteries

2024-01-16
2024-26-0168
This paper addresses challenges in current Fuel Cell Stack Buses and presents a novel Fuel Cell Electric Vehicle Bus (FCEV-Bus) powertrain that combines fuel cells, ultra-capacitors, and batteries to enhance performance and reliability. Existing Fuel Cell Stack Buses struggle with responsiveness, power fluctuations, and cost-efficiency. The FCEV-Bus powertrain uses a Fuel Cell stack as the primary power source, ultra-capacitors for quick power response, and batteries for addressing power variations. Batteries also save costs in certain cases. This combination optimizes power management, improves system efficiency, and extends the FCEV-Bus's operational life. In conclusion, this paper offers an innovative solution to overcome traditional fuel cell system limitations, making FCEV-Buses more efficient and reliable for potential wider adoption.
Technical Paper

New Pass-by Noise Regulatory Norms IS 3028:2023 (Part 2) - an Analysis of Acceleration and Noise Source Contribution

2024-01-16
2024-26-0199
Worldwide automotive sector regulatory norms have changed and become more stringent and complex to control environmental noise and air pollution. To continue this trend, the Indian Ministry of Road Transport is going to impose new vehicle exterior pass-by noise regulatory norms IS 3028:2023 (Part2) to control urban area noise pollution. This paper studies the synthesis of M1 category vehicle driving acceleration, dominant noise source, and frequency contribution in exterior PBN level. A vehicle acceleration analysis study was carried out to achieve an optimized pass by noise (PBN) level based on the vehicle’s PMR ratio, reference, and measured test acceleration data. Based on the analysis, test gear strategy was decided to achieve a lower PBN level. This strategy involved increasing the effective final drive ratio and optimizing engine calibration, resulting in improvement with acceleration in the ith gear.
Technical Paper

A Detailed Study to Evaluate Sporty Sound Character of Passenger Cars

2024-01-16
2024-26-0207
Sound signature design is gaining more importance within global auto manufacturers. ‘Sportiness’ is one of the important point to consider while designing a sound character of a car for passionate drivers and those who love aggressive driving. Nowadays automobile manufacturers are more focused in developing a typical sound signature for their cars as a ‘unique design strategy’ to attract a niche segment of the market and to define their brand image. Exhaust system is one of the major aggregate determining the sound character of ICE vehicles which in turn has the direct influence on the customer perception of the vehicle and the Brand image and also the human comfort both inside and outside the cabin. This research work focuses on novel approaches to identify frequency range and order content by a detailed study of subjective feelings based on psycho-acoustics. Sound samples of various benchmark sporty vehicles have been studied and analyzed based on sound quality parameters.
Technical Paper

The Science of Engine Mounts and its Multidimensional Impact on Noise and Vibrations in Passenger Car

2024-01-16
2024-26-0203
A robust process of specifying engine mounting systems for internal combustion engines (ICE) has been established through decades of work and countless applications. Vehicle vibration is a critical consideration in the early stage of vehicle development. Apart from comfort, it also affects the overall vehicle's performance, reliability, Buzz-squeak and rattle (BSR), parts durability and robustness. The most dynamic system in a vehicle is the powertrain, a source of vibration inputs to the vehicle over the frequency range. The mounting system supports a powertrain in a vehicle and isolates the vibration generated from the powertrain to the vehicle. In addition, it also controls the overall dynamic movement of the powertrain system when the vehicle is subjected to road load excitations and avoids contact between the powertrain and other adjacent components of the vehicle.
Technical Paper

Utilizing Computed Tomography for Cell Characterization, Quality Assessment, and Failure Analysis

2024-01-16
2024-26-0189
Computed Tomography (CT) has become a potent instrument for non-invasive assessment of battery cell integrity, providing detailed insights into their internal structure. The present study explores the capabilities and advantages of employing CT for cell characterization through a systematic evaluation from various parameters. The evaluation results will be based on real-world experiments conducted on a standard battery cell, assessing the CT system’s ability to provide precise internal measurements, detect defects, and ensure the overall integrity of the cell. We outline a comprehensive framework that includes criteria such as system specifications, image quality, software capabilities, maintenance, service, and cost-effectiveness.
Technical Paper

Evaluation of Interface Microstructure and Bonding Strength for Dissimilar Rotary Friction Welding of E46 and AA6061-T6

2024-01-16
2024-26-0195
Nowadays, friction welding is recognised as a highly productive and economic joining process for similar as well as dissimilar welding of automobile and aerospace components. Friction welding is the viable solution to offset the challenges of dissimilar fusion welding due to varying thermal and physical properties as well as limited mutual solubility. This study investigated interface microstructure and bonding strength of dissimilar rotary friction welding of 3.15 mm E46 plate and 45 mm AA6061-T6 rod. The direct drive rotary friction welding of E46 and AA6061-T6 is performed at combinations of two different friction times (4 sec and 7 sec) and forging pressure (108 MPa and 125 MPa). Mechanical bonding strength at the interface is evaluated based on the push-off and multistep shear tests. Further, a fractured steel surface was visually examined to understand the failure mechanism of welded joints.
Technical Paper

Review on Laser Welding of High Strength Aluminium Alloy for Automotive Applications

2024-01-16
2024-26-0193
High strength aluminium alloys are an ideal material in the automotive sector leading to a significant weight reduction and enhancement in product safety. In recent past extensive development in the field of high strength steel and aluminium was undertaken. This development has been propelled due to demand for light weight automotive parts. The high strength to weight ratio possessed by Al alloy helps in reducing the total weight of the vehicle without effecting the overall performance, thereby increasing the fuel economy, and reducing the carbon emission level. Joining of high strength aluminium alloy is critical to develop durable automotive products. Joining of high strength aluminium alloy for mass production in automobile industry is a challenging task. Laser welding is recognized as an advanced process to join materials with a laser beam of high-power, high- energy density.
Technical Paper

Adaptive Steering System for Improved User Experience

2024-01-16
2024-26-0023
The steering system of an automobile serves as the initial point of contact for the driver and is a crucial determinant in the purchasing choice of the vehicle. The present steering system is equipped with a singular Electric Power Assisted Steering (EPAS) map, resulting in a consistent steering sensation during maneuvers conducted at both low and high velocities. Certain vehicles are equipped with a steering system that includes fixed driving modes that require manual intervention. This paper presents a proposed Machine Learning based Adaptive Steering System that aims to address the requirements and limitations of fixed mode steering systems. The system is designed to automatically transition between comfort and sports modes, providing users with the desired soft or hard steering feel. The system utilizes vehicle response to driver input in order to identify driving patterns, subsequently adjusting steering assist and torque automatically.
Technical Paper

A Study on the Effect of an Acoustic Valve in the Exhaust Silencer for Noise Reduction in Automotive Application

2024-01-16
2024-26-0220
Customer preference towards quieter vehicles is ever-increasing. Exhaust tailpipe noise is one of the major contributors to in-cab noise and pass-by-noise of the vehicle. This research proposes a silencer with an integrated acoustic valve to reduce exhaust tailpipe noise. Incident exhaust wave coming from the engine strikes the acoustic valve and generates reflected waves. Incident waves and reflected waves cancel out each other which results in energy loss of the exhaust gas. This loss of energy results in reduced noise at the exhaust tailpipe end. To evaluate the effectiveness of the proposed silencer on the vehicle, NVH (Noise, vibration, and harshness) performance of the proposed silencer was compared with the existing silencer which is without an acoustic valve. A CNG (Compressed natural gas) Bus powered by a six-in-line cylinder engine was chosen for the NVH testing.
Technical Paper

Analysis and Mitigation of Grunt Noise in Hydraulic Power Assisted Steering Systems

2024-01-16
2024-26-0218
This paper addresses the "Grunt Noise" anomaly in Hydraulic Power Assisted Steering (HPAS) systems, detailing an extensive effort to resolve this disruptive issue. HPAS, while cost-efficient, faces challenges as it adapts to customer demands for reduced steering effort and enhanced handling. Intensified HPAS intervention requires components to withstand higher pressures and tighter tolerances, leading to occasional anomalies. "Grunt Noise" arises from Torsion bar (T-bar) resonance with fluid pressure pulsations. A comprehensive study identifies load conditions, transfer paths, and frequency bands, extending from vehicle to Pinion Valve assembly levels. Root cause analysis traces the issue from Steering Wheel to T-bar, validating the approach. The T-bar's twisting operation renders torsional stiffness crucial for Grunt Noise. Lower stiffness T-bar, when overpowered by liquid force, causes microsecond imprecise valve openings, leading to cavitation-induced Rack & Pinion vibrations.
Technical Paper

A Design Approach to Optimize Suspension Clunking Noise in Passenger Vehicles

2024-01-16
2024-26-0226
Designing a Passenger vehicles suspension system is a key challenge for all OEMs because balancing buzz, squeak, and rattle (BSR) acoustic performance at low-speed driving and improving ride quality at high-speed driving conditions are bet challenging. Suspension noise deteriorates in-cab acoustic quietness and overall vehicle performance. For this reason, optimizing these noises is becoming increasingly prioritized as a key design issue throughout the development process of suspension system. This paper studies the various components of suspension system and their noises in Passenger vehicles. Based on customer voice index and drive pattern, suspension anomalous Clunking noise was identified in Passenger vehicles. This noise phenomenon was cascaded from the vehicle level to BSR rig and eventually to the suspension rig for root cause analysis.
Technical Paper

Application of Hydraulically Controlled Rear Mount to Mitigate Key on/off Requirement of Passenger Car

2024-01-16
2024-26-0210
Key on/off (KOKO) Vibration plays a vital role in the quality of NVH (Noise Vibration and Harshness) on a vehicle. A good KOKO experience on the vehicle is desirable for every customer. The vibration transfer to the vehicle can be refined either by reducing the source vibrations or improving isolation efficiency. For the engine mounting system of passenger cars, the mounts are an isolating element between the powertrain and receiver. Various noise, Vibration, and harshness criteria must be fulfilled by mounting system performance like driver seat rail vibration (DSR), tip-in/tip-out, judder performance, DSR at idle and Key on/off Vibration. Out of these requirements, in the paper, the investigation is done on KOKO improvement without affecting other NVH parameters related to mount performance. Higher damping is required to isolate Vibration generated during the Key-on event, and lower damping is required during the idle condition of the vehicle.
Technical Paper

Crank-Train System Balancing and Crankshaft Optimization in Different Outlook

2024-01-16
2024-26-0209
IC (Internal Combustion) engines are evolved and refined over time to greater levels of technology in terms of emission, performance, NVH (Noise, Vibration & Harshness), and design philosophy. Crank-train generates a greater impact on NVH optimization due to its geometry and dynamics. Hence, more attention to mass balancing is required to minimize the negative impact on NVH. The present work demonstrates the evaluation of balancing rate of crank-train system from the first principle of couple balancing. Calculations are conducted at the concept stage to estimate an internal rotating couple balancing of crank-train system due to counterweights and rotating masses. As crankshaft weighs approximately 10-12% weight of an engine and its counter weight plays a vital role in balancing, its optimization will result in a significant impact on NVH.
X