Refine Your Search

Topic

Search Results

Technical Paper

A New U-Net Speech Enhancement Framework Based on Correlation Characteristics of Speech

2024-04-09
2024-01-2015
As a key component of in-vehicle intelligent voice technology, speech enhancement can extract clean speech signals contaminated by environmental noise to improve the perceptual quality and intelligibility of speech. It has extensive applications in the field of intelligent car cabins. Although some end-to-end speech enhancement methods based on time domain have been proposed, there is often limited consideration given to designing model architectures based on the characteristics of the speech signal. In this paper, we propose a new U-Net based speech enhancement framework that utilizes the temporal correlation of speech signals to reconstruct higher-quality and more intelligible clean speech.
Technical Paper

Research on Cold Start Strategy of Vehicle Multi-Stack Fuel Cell System

2023-10-30
2023-01-7036
To study the cold start of muti-stack fuel cell system (MFCS), a novel thermal management subsystem structure and corresponding cold start strategies are proposed. Firstly, leveraging the distinctive configuration of the MFCS that can be sequentially initiated, we augmented the existing thermal management subsystem with the incorporation of two additional collection valves and two bypass diverter valves, which affords an increased degree of flexibility in the formulation of cold-start strategies. Secondly, we innovatively propose a hierarchical auxiliary heating cold start strategy and an average auxiliary heating cold start tailored for MFCS consisting of power levels of 20 kW, 70 kW, and 120 kW. Furthermore, we have developed a controller to address temperature control challenges during the start-up process.
Technical Paper

Research on Air Mass Flow and Pressure Control Method for the Multi-Stack Fuel Cell System Based on Model Predictive Control

2023-10-30
2023-01-7037
The multi-stack fuel cell system (MFCS) has the advantages of higher efficiency, stronger robustness and longer life, and could be widely used in high-power application scenarios such as automobiles, airplanes, trains, and ships. The appropriate air mass flow and air pressure have a crucial impact on the output power performance indicators of the MFCS. Considering that the designed integrated air supply system for the MFCS has significant gas supply hysteresis and strong coupling between the inlet air mass flow and air pressure of each stack, this paper identifies multiple steady-state operating points of the fuel cell system to obtain corresponding linear predictive models and establishes corresponding predictive control algorithms. The Model Predictive Control (MPC) algorithms are switched in real-time based on the current load throughout the entire C-WTVC (China World Transient Vehicle Cycle) working condition.
Technical Paper

Transient Temperature Field Prediction of PMSM Based on Electromagnetic-Heat-Flow Multi-Physics Coupling and Data-Driven Fusion Modeling

2023-10-30
2023-01-7031
With the increase of motor speed and the deterioration of operating environment, it is more difficult to predict the transient temperature field (TTF). Meanwhile, it is difficult to obtain the temperature test dataset of key nodes under various complete road conditions, so the cost of bench test or real vehicle test is high. Therefore, it is of great significance to establish a high fidelity, lightweight temperature prediction model which can be applied to real vehicle thermal management for ensuring the safe and stable operation of motor. In this paper, a physical model simulating electromagnetic-heat-flow multi-physical coupling of permanent magnet synchronous motor (PMSM) in electric drive gearbox (EDG) is established, and the correctness of the model is verified by the actual EDG bench test.
Technical Paper

Simplified Modeling of an Innovative Heating Circuit for Battery Pack Based on Traction Motor Drive System

2023-04-11
2023-01-0515
Alternating current (AC) heating is an efficient and homogeneous manner to warm Lithium-ion batteries (LIBs) up. The integrated design of AC heating combined with the motor drive circuit has been studied by many scholars. However, the problems of excessive heating frequency (>1kHz) and zeros torque output of the motor during the heating process have not been solved. High-frequency AC excitation may be detrimental to the battery because the effect of high-frequency AC excitation on the state of health of the battery is unknown. In addition, although the zero-torque output can be realized by controlling the q-axis current to zero, the torque ripple is still difficult to eliminate in a real-world application. To further solve the above problems, the motor’s neutral conductor is pulled out and connected to a large capacitor to increase the current amplitude of the AC heating at low frequencies.
Technical Paper

Ride Comfort Analysis of Seated Occupants Based on an Integrated Vehicle-Human Dynamic Model

2023-04-11
2023-01-0914
Low-frequency vibration caused by road roughness while driving is transmitted to the human body through tires, suspension, and seats. Prolonged exposure of the human body to the vibratory environment will have an impact on ride comfort or even health issues. In order to investigate the vibration response of various segments of occupants while driving, a 15-DOF multi-body dynamic model depicting the shanks with feet, thighs, pelvis, torso with arms, and the head of occupants is established in the two-dimensional sagittal plane, which considers the contact between the occupant and the cushion, backrest headrest, and the vehicle floor simultaneously. The biodynamic parameters are obtained by fitting the published vibration experimental data based on an optimization algorithm. The previously proposed half-car model is incorporated into the human model to construct an integrated vehicle-human model for further ride comfort analysis.
Technical Paper

One-Dimensional Simulation Design and Prediction of Thermostat in PEMFC Fuel Cell System

2023-04-11
2023-01-0945
The temperature management of the proton exchange membrane fuel cell cooling system is very important to the stability and life of the engine. The size and cycle switching of the cooling system and the rapid temperature rise of the system are inseparable from the thermostat. In this paper, a simulation model of the fuel cell cooling system is built for a 30KW fuel cell system, and its accuracy is verified by experiments. The temperature fluctuation of the system in the confluence mode is mainly studied, and the error is about 0.9 °C. The influence of the converging mode of the thermostat on the temperature of the cooling system is researched through the simulation platform. Based on the simulation model, the influence of thermostats with different external environments and opening degrees on the size cycle switching of cooling system is predicted, which provides optimization and guidance for the system control strategy.
Technical Paper

Experimental Analysis of Control Strategies on Air Supply System for Proton Exchange Membrane Fuel Cells

2022-11-16
2022-01-5096
Proton exchange membrane fuel cells (PEMFC) are considered an environment-friendly alternative vehicle power in the future owing to their high power density and zero-carbon emission. To research the performance of the air supplied by the PEMFC air system, the PEMFC air system bench composed of an air compressor, cooler, emulated stack, back-pressure valve, and sensors was built. Then, a PEMFC system test bench composed of a hydrogen supply subsystem, stack, air supply subsystem, electronic control subsystem, and cooling subsystem was established. The fuel cell system control parameters and control method are complex due to the coupling and nonlinearity of the air supply system. The strategy composed of a feedforward table and piecewise proportional integral (PI) feedback control strategy was employed to regulate the pressure and flow rate of the air supply system.
Technical Paper

Design and Optimization of an SUV Engine Compartment Bottom Shield Based on Kriging Interpolation and Multi-Island Genetic Algorithm

2022-03-29
2022-01-0172
Engine compartment thermal management can achieve energy saving and emission reduction. The structural design of the components in the engine compartment affects the thermal fluid flow performance, which in turn affects the thermal management performance. In this paper, based on the phenomenon that the surface of the parts in the engine compartment is abnormally high due to design defects of an SUV engine compartment bottom shield, the engine compartment is modeled and analyzed by CFD using the software STAR-CCM+. It is not conducive to the heat dissipation, so the bottom shield needs to be redesigned. To redesign the shape of the bottom shield, four dimensions and one coordinate value were selected as the design parameters, and the oil pan maximum surface temperature was selected as the optimization target. The Latin hypercube sampling method was used to sample the space uniformly, and the experimental design plan was constructed and simulated.
Technical Paper

Design Optimization of Geometric Parameters of Radiator Based on Cooling Module

2022-03-29
2022-01-0175
Improving the heat dissipation performance of the engine radiator in the real working environment is of great significance to the cooling of the engines. The purpose of this paper is to study the influence of the radiator’s geometric parameters on its heat dissipation performance in the cooling module environment and optimize the geometric parameters to improve the heat dissipation performance of the radiator. Based on the performance data obtained from relevant component tests and the engine thermal balance test, the simulation model of the engine thermal management system is established, and the reliability of the model is verified. The heat dissipation performances of the single radiator and the radiator in the cooling module are compared by using the validated model.
Technical Paper

Optimal Analysis of Layout Parameters of SUV Engine Compartment Parts Based on Orthogonal Design

2022-03-29
2022-01-0184
The layout of component in the engine compartment affects the fluid flow performance, thereby affects the thermal management performance. Based on the fluid flow performance in the engine compartment of an SUV, this paper proposes local optimization plans of the cooling module—moving downward the oil cooler and forward the intercooler, tilting an angle of the cooling module and shifting the fan. This paper took the fan center temperature as the optimization goal and set three levels for the four factors. It was found that the deviation of the fan has the most significant impact on fan center temperature among four factors. Then we discovered that the interaction between the factors has a significant impact on the air intake volume of the cooling module.
Technical Paper

Understanding the Transient Behavior and Consistency Evolution of PEMFC from the Perspective of Temperature

2022-03-29
2022-01-0189
The temperature of proton exchange membrane fuel cell (PEMFC) is the key factor restricting fuel cell’s performance. A deep understanding of temperature on stack voltage consistency and transient characteristics is necessary for improving the output performance of fuel cell. In this paper, the variation trend of consistency and transient characteristics of 20kW PEMFC stack at different temperatures is studied by experiment. In consistency, the amplitude of voltage changes and voltage difference (voltage coefficient variation σV) under different thermal loading conditions is examined. In transient characteristics, discussing the trends of transient voltage at different thermal loading. As the result, once the stack temperature increases from 65 °C to 70 °C, the stack performance and dynamic response are significantly improved, which may be caused by the rise in temperature promoting the establishment of the internal quality transmission channel.
Technical Paper

Field Experimental Investigation on Human Thermal Comfort in Vehicle Cabin

2022-03-29
2022-01-0195
A comfortable thermal environment can alleviate fatigue, reduce irritability, and improve driving safety. However, it is rather a challenge to evaluate thermal comfort inside a vehicle due to multifarious geometric and environmental factors as well as human differences. This study conducted a series of field experiments both in summer and winter conditions, measuring the thermal environment parameters inside the compartment and the skin temperature of experimental personnel, and carrying out subjective thermal sensation and comfort questionnaires. The experimental results showed that head and trunk are the most relevant parts of all human body parts to the overall thermal sensation/comfort. For overall thermal sensation, the value of regression R2 referring to head/trunk is 0.691/0.721, while those corresponding to overall thermal comfort is 0.802/0.773.
Journal Article

Performance Optimization Using ANN-SA Approach for VVA System in Diesel Engine

2022-03-29
2022-01-0628
Diesel engine is vital in the industry for its characteristics of low fuel consumption, high-torque, reliability, and durability. Existing diesel engine technology has reached the upper limit. It is difficult to break through the fuel consumption and emission of diesel engines. VVA (Variable Valve Actuation) is a new technology in the field of the diesel engines. In this paper, GT-Suite and ANN (artificial neural network) model are established based on engine experimental data and DoE simulation results. By inputting Intake Valve Opening crake angle (IVO), Intake Valve Angle Multiplier (IVAM) and Exhaust Valve Angle Multiplier (EVAM) into the ANN Model, and by using SA (simulated annealing algorithm), the optimized results of intake and exhaust valve lift under the target conditions are obtained.
Technical Paper

Numerical Simulation of Surface Temperature Fluctuation and Thermal Barrier Coating at the Piston Top for a Diesel Engine Performance Improvement

2021-04-06
2021-01-0229
Low heat rejection (LHR) combustion has been recognized as a potential technology for further fuel economy improvement. This paper aims to simulate how the piston top’s thermal barrier coating affects the engine’s thermal efficiency and emissions. Accordingly, a Thin-wall heat transfer model in AVL Fire software was employed. The effects of increasing the piston top surface temperature, comparing different thermal barrier coating material, were simulated at the engine’s rated power operating point, so as the piston top’s surface roughness. In comparison to a standard diesel engine, the indicated thermal efficiency (ITE) could increase by 0.4% when the surface temperature of the piston top changed from 575K to 775K.
Technical Paper

Control Strategies for Prevention of PEMFC Oxygen Starvation: A Review

2021-04-06
2021-01-0743
Proton Exchange Membrane Fuel Cell (PEMFC) which has advantages of starting fast, high energy density, high efficiency, lower operating temperature and little pollution is widely regarded as one of the most promising energy sources. The PEMFC system includes several subsystems such as air supply subsystem, hydrogen supply subsystem, thermal management subsystem, water management subsystem, energy management subsystem and so on. The Air supply subsystem has great influence on the performance and life of PEMFC stack. Whether oxygen supply in air supply subsystem is sufficient or not will affects reaction rate of fuel, the operating temperature and degradation of PEMFC stack and so on. To solve the issue of oxygen starvation in PEMFC stack, the control strategies for improving dynamic response and preventing air shortage of the PEMFC air supply subsystem are reviewed.
Technical Paper

Analysis of Rotor Dynamics Characteristics of Jeffcot Rotor-Floating Ring Bearing System Including Heat Transfer

2021-04-06
2021-01-0641
With the increasing application of turbochargers on internal combustion engines, there are more and more examples of vibration faults in turbochargers. The dynamics characteristics of the bearing-rotor system of engine turbocharger systems have received extensive attention. The bearing-rotor system dynamics is a discipline that couples bearing fluid lubrication research and rotor dynamics. The lubrication characteristics of the bearing and the dynamic characteristics of the rotor must be studied at the same time. In this paper, the lubrication model of floating ring bearing of turbocharger is established, and the viscosity lubrication condition considering heat transfer effect is obtained. Based on the Capone cylindrical bearing oil film force model, the nonlinear oil film force equation of the floating ring bearing is deduced. Further the dynamic model of the Jeffcott rotor-floating ring bearing system is established.
Technical Paper

3-Dimensional Numerical Simulation on CuO Nanofluids as Heat Transfer Medium for Diesel Engine Cooling System

2020-04-14
2020-01-1109
CuO-water nanofluids was utilized as heat transfer medium in the cooling system of the diesel engine. By using CFD-Fluent software, for 0.5%, 1%, 3% and 5% mass concentration of nanofluids, 3-dimensional numerical simulation about flow and heat transfer process in the cooling system of engine was actualized. According to stochastic particle tracking in turbulent flow, for solid-liquid two phase flow discrete phase, the moving track of nanoparticles was traced. By this way, for CuO nanoparticles of different mass concentration nanofliuds in the cooling jacket of diesel engine, the results of the concentration distribution, velocity distribution, internal energy variation, resident time, total heat transfer and variation of total pressure reduction between inlet and outlet were ascertained.
Technical Paper

Research on Fast Filling Strategy of Large Capacity On-Board Hydrogen Storage Tank for Highway Passenger Cars

2020-04-14
2020-01-0855
In order to study the fast filling problem of large-capacity on-board hydrogen storage tank for highway passenger cars, a computational fluid dynamics (CFD) simulation model of 134L large-capacity hydrogen storage tank was established. By simulating different pre-cooling temperatures and mass flow rates, the temperature distribution and thermal transmission in the tank were observed. Due to the large ratio of length to diameter of the hydrogen tank, the temperature distribution is extremely uneven during the whole filling process, and the high temperature area is mainly concentrated in the tank tail. And the heat transfer between the gas and the tank wall is not obvious under the low and constant mass flow rate. The temperature rise process during the whole filling process under different mass flow conditions was simulated to satisfy the highest safe temperature limit.
Technical Paper

Investigation of the Operating Conditions on the Water and Thermal Management for a Polymer Electrolyte Membrane Fuel Cell by One-Dimensional Model

2020-04-14
2020-01-0856
Water and thermal management is an essential issue that influences performance and durability of a polymer electrolyte membrane fuel cell (PEMFC). Water content in membrane decides its ionic conductivity and membrane swelling favors the ionic conductivity, resulting in decreases in the membrane’s ohmic resistance and improvement in the output voltage. However, if excessive liquid water can’t be removed out of cell quickly, it will fill in the pores of catalyst layer (CL) and gas diffusion layer (GDL) then flooding may occur. It is essential to keep the water content in membrane at a proper level. In this work, a transient isothermal one-dimensional model is developed to investigate effects of the relative humidity of inlet gas and cell temperature on performance of a PEMFC.
X