Refine Your Search

Topic

Search Results

Technical Paper

Comparing Real Driving Emissions from Euro 6d-TEMP Vehicles Running on E0 and E10 Gasoline Blends

2023-10-31
2023-01-1662
Several governments are increasing the blending mandate of renewable fuels to reduce the life-cycle greenhouse gas emissions of the road transport sector. Currently, ethanol is a prominent renewable fuel and is used in low-level blends, such as E10 (10 %v/v ethanol, 90 %v/v gasoline) in many parts of the world. However, the exact concentration of ethanol amongst other renewable fuel components in commercially available fuels can vary and is not known. To understand the impact of the renewable fuel content on the emissions from Euro 6d-TEMP emissions specification vehicles, this paper examines the real-driving emissions (RDE) from four 2020 to 2022 model-year vehicles run on E0 and E10 fuels. CO, CO2, NO, and NO2 were measured through a Portable Emissions Measuring System (PEMS).
Technical Paper

A Random Forest Algorithmic Approach to Predicting Particulate Emissions from a Highly Boosted GDI Engine

2021-09-05
2021-24-0076
Particulate emissions from gasoline direct injection (GDI) engines continue to be a topic of substantial research interest. Forthcoming regulation both in the USA and the EU will further reduce their emission and drive innovation. Substantial research effort is spent undertaking experiments to understand, characterize, and research particle number (PN) emissions from engines and vehicles. Recent advances in computing power, data storage, and understanding of artificial intelligence algorithms now mean that these are becoming an important tool in engine research. In this work a random forest (RF) algorithm is used for the prediction of PN emissions from a highly boosted (up to 32 bar BMEP) GDI engine. Particle size, concentration, and the accumulation mode geometric standard deviation (GSD) are all predicted by the model. The results are analysed and an in depth study on parameter importance is carried out.
Technical Paper

Two-Colour Pyrometry Measurements of Low-Temperature Combustion using Borescopic Imaging

2021-04-06
2021-01-0426
Low temperature combustion (LTC) of diesel fuel offers a path to low engine emissions of nitrogen oxides (NOx) and particulate matter (PM), especially at low loads. Borescopic optical imaging offers insight into key aspects of the combustion process without significantly disrupting the engine geometry. To assess LTC combustion, two-colour pyrometry can be used to quantify local temperatures and soot concentrations (KL factor). High sensitivity photo-multiplier tubes (PMTs) can resolve natural luminosity down to low temperatures with adequate signal-to-noise ratios. In this work the authors present the calibration and implementation of a borescope-based system for evaluating low luminosity LTC using spatially resolved visible flame imaging and high-sensitivity PMT data to quantify the luminous-area average temperature and soot concentration for temperatures from 1350-2600 K.
Technical Paper

Sub-23 nm Particulate Emissions from a Highly Boosted GDI Engine

2019-09-09
2019-24-0153
The European Particle Measurement Program (PMP) defines the current standard for measurement of Particle Number (PN) emissions from vehicles in Europe. This specifies a 50% count efficiency (D50) at 23 nm and a 90% count efficiency (D90) at 41 nm. Particulate emissions from Gasoline Direct Injection (GDI) engines have been widely studied, but usually only in the context of PMP or similar sampling procedures. There is increasing interest in the smallest particles - i.e. smaller than 23 nm - which can be emitted from vehicles. The literature suggest that by moving D50 to 10 nm, PN emissions from GDI engines might increase by between 35 and 50% but there remains a lot of uncertainty.
Technical Paper

Novel Metrics for Validation of PIV and CFD in IC Engines

2019-04-02
2019-01-0716
In-cylinder flow motion has a significant effect on mixture preparation and combustion. Therefore, it is vital that CFD engine simulations are capable of accurately predicting the in-cylinder velocity fields. High-speed planar Particle Image Velocimetry (PIV) experiments have been performed on a single-cylinder GDI optical engine in order to validate CFD simulations for a range of engine conditions. Novel metrics have been developed to quantify the differences between experimental and simulated velocity fields in both alignment and magnitude. The Weighted Relevance Index (WRI) is a variation of the standard Relevance Index that accounts for the local velocity magnitudes to provide a robust comparison of the alignment between two vector fields. Similarly, the Weighted Magnitude Index (WMI) quantifies the differences in the local magnitudes of the two velocity fields.
Journal Article

Cycle-to-Cycle Variation Analysis of Two-Colour PLIF Temperature Measurements Calibrated with Laser Induced Grating Spectroscopy in a Firing GDI Engine

2019-04-02
2019-01-0722
In-cylinder temperatures and their cyclic variations strongly influence many aspects of internal combustion engine operation, from chemical reaction rates determining the production of NOx and particulate matter to the tendency for auto-ignition leading to knock in spark ignition engines. Spatially resolved measurements of temperature can provide insights into such processes and enable validation of Computational Fluid Dynamics simulations used to model engine performance and guide engine design. This work uses a combination of Two-Colour Planar Laser Induced Fluorescence (TC-PLIF) and Laser Induced Grating Spectroscopy (LIGS) to measure the in-cylinder temperature distributions of a firing optically accessible spark ignition engine. TC-PLIF performs 2-D temperature measurements using fluorescence emission in two different wavelength bands but requires calibration under conditions of known temperature, pressure and composition.
Technical Paper

Effect of Thermocouple Size on the Measurement of Exhaust Gas Temperature in Internal Combustion Engines

2018-09-10
2018-01-1765
Accurate measurement of exhaust gas temperature in internal combustion engines is essential for a wide variety of monitoring and design purposes. Typically these measurements are made with thermocouples, which may vary in size from 0.05 mm (for fast response applications) to a few millimetres. In this work, the exhaust of a single cylinder diesel engine has been instrumented both with a fast-response probe (comprising of a 50.8 μm, 127 μm and a 254 μm thermocouple) and a standard 3 mm sheathed thermocouple in order to assess the performance of these sensors at two speed/load conditions. The experimental results show that the measured time-average exhaust temperature is dependent on the sensor size, with the smaller thermocouples indicating a lower average temperature for both speed/load conditions. Subject to operating conditions, measurement discrepancies of up to ~80 K have been observed between the different thermocouples used.
Technical Paper

A Review of the Requirements for Injection Systems and the Effects of Fuel Quality on Particulate Emissions from GDI Engines

2018-09-10
2018-01-1710
Particulate emissions from Gasoline Direct Injection (GDI) engines have been an important topic of recent research interest due to their known environmental effects. This review paper will characterise the influence of different gasoline direct injection fuel systems on particle number (PN) emissions. The findings will be reviewed for engine and vehicle measurements with appropriate driving cycles (especially real driving cycles) to evaluate effects of the fuel injection systems on PN emissions. Recent technological developments alongside the trends of the influence of system pressure and nozzle design on injector tip wetting and deposits will be considered. Besides the engine and fuel system it is known that fuel composition will have an important effect on GDI engine PN emissions. The evaporation qualities of fuels have a substantial influence on mixture preparation, as does the composition of the fuel itself.
Journal Article

A New Method for Measuring Fuel Flow in an Individual Injection in Real Time

2018-04-03
2018-01-0285
Knowledge of fuel mass injected in an individual cycle is important for engine performance and modeling. At the moment, such measurements are not possible on engine or in real time. In this article, a new method using Coriolis flow meters (CFMs) and a new, patented, signal processing technique, known as the Prism, are introduced. CFMs are extensively used for flow measurement both in the automotive industry and further afield and, when coupled with the Prism, have the potential to make these challenging high-speed measurements. A rig-based feasibility study was conducted injecting very small quantities of diesel (3 mg) at pressures of up to 1000 bar at simulated engine speeds of up to 4000 rpm. The results show that these small quantities can in principle be measured. The results also reveal a previously unknown behavior of CFMs when measuring very low flow rates at high speed.
Technical Paper

Assessing the Sensitivity of Hybrid RANS-LES Simulations to Mesh Resolution, Numerical Schemes and Turbulence Modelling within an Industrial CFD Process

2018-04-03
2018-01-0709
A wide-ranging investigation into the sensitivity of the hybrid RANS-LES based OpenFOAM CFD process at Audi was undertaken. For a range of cars (A1, TT, Q3 & A4) the influence of the computational grid resolution, turbulence model formulation and spatial & temporal discretization is assessed. It is shown that SnappyHexMesh, the Cartesian-prismatic built-in OpenFOAM mesher is unable to generate low y+ grids of sufficient quality for the production Audi car geometries. For high y+ grids there was not a consistent trend of additional refinement leading to improved correlation between CFD and experimental data. Similar conclusions were found for the turbulence models and numerical schemes, where consistent improvements over the baseline setup for all aerodynamic force coefficients were in general not possible. The A1 vehicle exhibited the greatest sensitivity to methodology changes, with the TT showing the least sensitivity.
Technical Paper

Comparing the Effect of a Swirl Flap and Asymmetric Inlet Valve Opening on a Light Duty Diesel Engine

2017-10-08
2017-01-2429
Diesel engine designers often use swirl flaps to increase air motion in cylinder at low engine speeds, where lower piston velocities reduce natural in-cylinder swirl. Such in-cylinder motion reduces smoke and CO emissions by improved fuel-air mixing. However, swirl flaps, acting like a throttle on a gasoline engine, create an additional pressure drop in the inlet manifold and thereby increase pumping work and fuel consumption. In addition, by increasing the fuel-air mixing in cylinder the combustion duration is shortened and the combustion temperature is increased; this has the effect of increasing NOx emissions. Typically, EGR rates are correspondingly increased to mitigate this effect. Late inlet valve closure, which reduces an engine’s effective compression ratio, has been shown to provide an alternative method of reducing NOx emissions.
Journal Article

In-Cylinder Temperature Measurements Using Laser Induced Grating Spectroscopy and Two-Colour PLIF

2017-09-04
2017-24-0045
In-cylinder temperature measurements are vital for the validation of gasoline engine modelling and useful in their own right for explaining differences in engine performance. The underlying chemical reactions in combustion are highly sensitive to temperature and affect emissions of both NOx and particulate matter. The two techniques described here are complementary, and can be used for insights into the quality of mixture preparation by measurement of the in-cylinder temperature distribution during the compression stroke. The influence of fuel composition on in-cylinder mixture temperatures can also be resolved. Laser Induced Grating Spectroscopy (LIGS) provides point temperature measurements with a pressure dependent precision in the range 0.1 to 1.0 % when the gas composition is well characterized and homogeneous; as the pressure increases the precision improves.
Technical Paper

Optical Techniques that can be Applied to Investigate GDI Engine Combustion

2017-09-04
2017-24-0046
The increased efficiency and specific output with Gasoline Direct Injection (GDI) engines are well known, but so too are the higher levels of Particulate Matter emissions compared with Port Fuel Injection (PFI) engines. To minimise Particulate Matter emissions, then it is necessary to understand and control the mixture preparation process, and important insights into GDI engine mixture preparation and combustion can be obtained from optical access engines. Such data is also crucial for validating models that predict flows, sprays and air fuel ratio distributions. The purpose of this paper is to review a number of optical techniques; the interpretation of the results is engine specific so will not be covered here. Mie scattering can be used for semi-quantitative measurements of the fuel spray and this can be followed with Planar Laser Induced Fluorescence (PLIF) for determining the air fuel ratio and temperature distributions.
Journal Article

Model Predictive Combustion Control Implementation Using Parallel Computation on an FPGA

2016-04-05
2016-01-0817
The introduction of transient test cycles and the focus on real world driving emissions has increased the importance of ensuring the NOx and soot emissions are controlled during transient manoeuvres. At the same time, there is a drive to reduce the number of calibration variables used by engine control strategies to reduce development effort and costs. In this paper, a control orientated combustion model, [1], and model predictive control strategy, [2], that were developed in simulation and reported in earlier papers, are applied to a Diesel engine and demonstrated in a test vehicle. The paper describes how the control approach developed in simulation was implemented in embedded hardware, using an FPGA to accelerate the emissions calculations. The development of the predictive controller includes the application of a simplified optimisation algorithm to enable a real-time calculation in the test vehicle.
Technical Paper

Spray Behaviour and Particulate Matter Emissions with M15 Methanol/Gasoline Blends in a GDI Engine

2016-04-05
2016-01-0991
Model M15 gasoline fuels have been created from pure fuel components, to give independent control of volatility, the heavy end content and the aromatic content, in order to understand the effect of the fuel properties on Gasoline Direct Injection (GDI) fuel spray behaviour and the subsequent particulate number emissions. Each fuel was imaged at a range of fuel temperatures in a spray rig and in a motored optical engine, to cover the full range from non-flashing sprays through to flare flashing sprays. The spray axial penetration (and potential piston and liner impingement), and spray evaporation rate were extracted from the images. Firing engine tests with the fuels with the same fuel temperatures were performed and exhaust particulate number spectra captured using a DMS500 Mark II Particle Spectrometer.
Technical Paper

Assessment of Empirical Heat Transfer Models for a CFR Engine Operated in HCCI Mode

2015-04-14
2015-01-1750
Homogeneous charge compression ignition (HCCI) engines are a promising alternative to traditional spark- and compression-ignition engines, due to their high thermal efficiency and near-zero emissions of NOx and soot. Simulation software is an essential tool in the development and optimization of these engines. The heat transfer submodel used in simulation software has a large influence on the accuracy of the simulation results, due to its significant effect on the combustion. In this work several empirical heat transfer models are assessed on their ability to accurately predict the heat flux in a CFR engine during HCCI operation. Models are investigated that are developed for traditional spark- and compression-ignition engines such as those from Annand [1], Woschni [2] and Hohenberg [3] and also models developed for HCCI engines such as those from Chang et al. [4] and Hensel et al. [5].
Technical Paper

The Effect of Non-Ideal Vapour-Liquid Equilibrium and Non-Ideal Liquid Diffusion on Multi-Component Droplet Evaporation for Gasoline Direct Injection Engines

2015-04-14
2015-01-0924
A model for the evaporation of a multi-component fuel droplet is presented that takes account of temperature dependent fuel and vapour properties, evolving droplet internal temperature distribution and composition, and enhancement to heat and mass transfer due to droplet motion. The effect on the internal droplet mixing of non-ideal fluid diffusion is accounted for. Activity coefficients for vapour-liquid equilibrium and diffusion coefficients are determined using the UNIFAC method. Both well-mixed droplet evaporation (assuming infinite liquid mass diffusivity) and liquid diffusion-controlled droplet evaporation (iteratively solving the multi-component diffusion equation) have been considered. Well-mixed droplet evaporation may be applicable with slow evaporation, for example early gasoline direct injection; diffusion-controlled droplet evaporation must be considered when faster evaporation is encountered, for example when injection is later, or when the fuel mixture is non-ideal.
Journal Article

Applying Design of Experiments to Determine the Effect of Gas Properties on In-Cylinder Heat Flux in a Motored SI Engine

2012-04-16
2012-01-1209
Models for the convective heat transfer from the combustion gases to the walls inside a spark ignition engine are an important keystone in the simulation tools which are being developed to aid engine optimization. The existing models have, however, been cited to be inaccurate for hydrogen, one of the alternative fuels currently investigated. One possible explanation for this inaccuracy is that the models do not adequately capture the effect of the gas properties. These have never been varied in a wide range because air and ‘classical’ fossil fuels have similar values, but they are significantly different in the case of hydrogen. As a first step towards a fuel independent heat transfer model, we have investigated the effect of the gas properties on the heat flux in a spark ignition engine.
Technical Paper

The Effects of Hot Air Dilution and an Evaporation Tube (ET) on the Particulate Matter Emissions from a Spray Guided Direct Injection Spark Ignition Engine

2012-04-16
2012-01-0436
The emission of nanoparticles from combustion engines has been shown to have a poorly understood impact on the atmospheric environment and human health, and legislation tends to err on the side of caution. Researchers have shown that Gasoline Direct Injection (GDI) engines tend to emit large amounts of small-sized particles compared to diesel engines fitted with Diesel Particulate Filters (DPFs). As a result, the particulate number emission level of GDI engines means that they could face some challenges in meeting the likely EU6 emissions requirement. This paper presents size-resolved particle number emissions measurements from a spray-guided GDI engine and evaluates the performance of an Evaporation Tube (ET). The performance of an Evaporation Tube and hot air dilution system with a 7:1 dilution ratio has been studied, as the EU legislation uses these to exclude volatile particles.
Journal Article

Investigation of Combustion Robustness in Catalyst Heating Operation on a Spray Guided DISI Engine, Part II - Measurements of Spray Development, Combustion Imaging and Emissions

2010-04-12
2010-01-0603
In-cylinder spray imaging by Mie scattering has been taken with frame rates up to 27,000 fps, along with high speed video photography of chemiluminescence and soot thermal radiation. Spectroscopic measurements have confirmed the presence of OH*, CH* and C2* emissions lines, and their magnitude relative compared to soot radiation. Filtering for CH* has been used with both the high speed video and a Photo-Multiplier Tube (PMT). The PMT signals have been found to correlate with the rate of heat release derived from in-cylinder pressure measurements. A high power photographic strobe has been used to illuminate the fuel spray. Images show that the fuel spray can strike the ground strap of the spark plug, break up, and a fuel cloud then drifts over and under the strap through the spark plug gap. Tests have conducted at two different spark plug orientations using a single spark strategy.
X